簡易檢索 / 詳目顯示

研究生: 亓志偉
Chi, Jhih-Wei
論文名稱: 以微熱流系統概念設計提昇引擎渦輪葉片冷卻效益之研發應用研究
Study of Micro Thermal Fluid Design Concept to Promote Gas Turbine Blade Cooling Effectiveness
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 80
中文關鍵詞: 薄膜冷卻效益微機電系統
外文關鍵詞: MEMS, Film Cooling
相關次數: 點閱:133下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用微機電系統(MEMS)製程技術研發整合陣列式微溫度感測器及微加熱器之微薄膜冷卻晶片,並採用薄膜加熱法(Film Heating),在不同吹洩比(Blowing Ratio)下,探討微觀下之薄膜冷卻效益。
    微薄膜冷卻晶片方面,採用摻雜硼離子之多晶矽作為微溫度感測器,並以所需間距分佈於量測壁面,其中微溫度感測器之線寬為10μm,且溫度感測器之解析度可達83Ω/℃,因此可用於準確量測局部壁面之溫度變化。此外微加熱器部分採用鈦金屬來製作,經由溫度校正驗後證可
    得電阻-溫度特性曲線之斜率幾乎為零(TCR≒0),可提供固定熱通量並能均勻加熱整個量測壁面。而微噴流槽口結構則是以 SU-8 負型厚膜光阻來製作,除了其具有良好之絕熱性以外,另可輕易變化各種不同高度,然而,晶片中所使用之材料,如玻璃基材、壓克力材料等,均為絕熱性良好之材料。因此,微薄膜冷卻晶片具有良好的絕熱性,能有效的控制晶片量測系統熱損失所造成之誤差,進而得到準確之量測數據。
    不過實驗量測過程中卻發現,由於蓋板厚度與微噴流槽口高度比值過大,主流場流過蓋板時,有渦流產生,使得微噴流結構受破壞,導致冷卻效益極差。將實驗結果與理論值及Ko and Liu之實驗值做比較,可發現實驗量測到的冷卻效益值偏低,而在改善蓋板厚度後,冷卻效益亦有所改善。

    Fabrication of micro film cooling chip which integrated with an array of micro temperature sensors and a micro heater by MEMS technology was developed. And the film heating method is used to discuss the micro-scale film cooling effectiveness at different blowing ratios.
    The fabrication of film cooling chip device, poly-silicon doped with Boron ion is used as the micro temperature sensor. The micro temperature sensors have the width of 10μm and are distributed along the measured wall. The resolution of micro temperature sensor is 83Ω/℃ can be, so it can use to measure accurately the local temperature distribution of the wall. In addition, the micro heater is fabricated by the titanium metal , demonstrates the chip after temperature calibration to obtain a relative of the resistance and temperature characteristic curve ,and show the TCR is almost zero, so it can be used to provide constant heat flux and can evenly heat up the entire wall .And the structure of micro jet slot is fabricated by SU-8 negative tone

    photoresist that has good adiabatic property and also can easily change the film thickness. And the materials used in the chip, for example, glass Substrate and PMMA, all are good adiabatic property material. So the film cooling chip has good adiabatic property, and it can effectively control the error which was created by the chip system heat loss to obtain the accurate data.
    But during the experimental process we can find that the film jet structure destroyed by mainstream flow because the ratio of slot lip thickness and slot height is oversized, and it causes the cooling effectiveness bad. After Comparing the result to Ko and Liu’s result, it can be found that the experimental result is lower. But after improving the slot lip thickness, the cooling effectiveness has the improvement.

    目 錄 授權書 簽署人須知 簽名頁 中文摘要 英文摘要 致謝 目錄………………………………….……………………..………………Ⅰ 表目錄………………………………….………………………..………...Ⅳ 圖目錄………………………………….……………………..…………...Ⅴ 符號說明………………………………….…………………..………....VIII 第一章 緒論 1-1 前言……….……………………………….………………………1 1-1-1 薄膜冷卻之重要性…..……………….………………………1 1-1-2 薄膜冷卻之冷卻效益計量……….…..………………………2 1-2 研究動機…………………………………………..….…………..3 1-3 文獻回顧 1-3-1 薄膜冷卻……..………..………………………………………4 1-3-2 微噴流……………………………………..…………………10 第二章 微薄膜冷卻晶片之設計 2-1 微薄膜冷卻晶片之整體架構設計….…….….……………..12 2-2 微溫度感測器及微加熱器之設計…...……………………..13 2-3 微薄膜冷卻晶片之絕熱性考量…..……………….………...15 第三章 微薄膜冷卻晶片之製作 3-1 晶圓洗淨…………..….………………….………….…...……...17 3-2 微溫度感測器製作 3-2-1 微影製程…………..…….………..………………….………17 3-2-2 多晶矽蝕刻製程……..….…………..……………….………19 3-2-3 金屬導線製程……………………………………….……….20 3-3 微加熱器製作………………………..…..…………….………21 3-3-1 金屬剝離法(Lift-off) …………………..….………..….……22 3-3-2 金屬導線製作……….……………….…………..….……….23 3-4 晶圓研磨與接合製程……….………………………..………..23 3-5 背向蝕刻(Backside Etch) ……….………………………..…..24 3-6 晶圓切割與開金屬焊墊(Metal Pad Open)………...............24 3-7 以SU-8負光阻製作微薄膜槽口(Slot)………………….…25 第四章 實驗方法與實驗設備 4-1 實驗方法…………………………………...……………………28 4-2 實驗設備……………………...…………………….…………...28 4-3 微加熱器與微溫度感測器之校正…………..……………...29 4-4 量測步驟……...………………………………………….……...30 第五章 實驗結果與討論 5-1 玻璃接合製程……………………..……………………………32 5-2 SU-8噴流槽出口結構製程………………...………………...32 5-3 晶片量測架設………………………………………….…33 5-4 實驗量測結果、分析與結論……………………………33 5-5 經驗關係式………………………………………………34 第六章 結論及未來工作………………………...………….……..…36 參考文獻…………………………..………………..……………………..38 圖表………………………………….………………………………..……43 自述………………………………….……………………………………..79 著作權聲明………………………………….……………………………80 表目錄 表2-1 製程常用材料之熱傳遞與熱膨脹係數…..……….…………..……45 表3-1 標準晶圓清洗工作流程……..………………..………....……….…46 表3-2 SU-8製程工作流程……………….………………..……………..47 表3-3 SU-8 負型厚膜光阻實驗參數 (a)各膜厚對應之旋塗轉速 (b)各膜厚對應之軟烤時間 (c)各膜厚對應之曝後烤時間 (d)各膜厚對應之顯影時間…………...………….....………..……………………………………...…48 圖目錄 圖1-1 自由噴流與微噴流之比較圖: (a)自由噴流,Re=2750 (b)微噴流,B=100μm, Re=32。…………...…………………...………………………50 圖2-1 先前學者發表有關薄膜冷卻效益的文獻之數據比較圖….............51 圖2-2 微溫度感測器、微加熱器及噴流槽口示意圖…………………….52 圖2-3 微溫度感測器分佈圖……………………………………………….52 圖2-2多晶矽之硼摻雜濃度對於其溫度靈敏度變化之測試曲線圖..........53 圖2-3 微溫度感測器之尺寸設計………………..…………………...........53 圖2-4 多晶矽摻雜濃度對電阻率之變化曲線圖………………….............54 圖2-5 微加熱器之尺寸設計………...………………………………..........54 圖3-1 晶片整體設計與架構示意圖 (a)晶片設計圖 (b)晶片架構圖(1)微溫度感測器 (2)微加熱器 (3)金屬導線……………………………………55 圖3-2 實驗流程示意圖…………...………………………………………..56 圖3-3 製程之光罩圖…………………..……………………………...........58 圖3-3 多晶矽溫度感測器蝕刻完成圖………………...…………………..62 圖3-4 溫度感測器金屬導線完成圖...……………………………….…….62 圖3-5 背向蝕刻設備圖………………...……………………………..........63 圖3-7 背向蝕刻完成圖……………...…………………………………......63 圖3-8 晶圓切割完成圖…………………………………...…………….….64 圖3-9 SU-8 膜厚與轉速關係圖…..……………….………………..........64 圖3-10 SU-8 膜厚與曝光量關係圖……...……………………………....65 圖3-11 SU-8結構完成圖………………...…..……………………...........65 圖3-12 噴流口完成圖…………………………………………...………..66 圖3-13 PMMA蓋板接合完成圖……………………………..…………..66 圖3-14 晶片拉線封裝完成圖……………………………………………...67 圖3-15 整體晶片架構示意圖 (a)Poly-Si temperature sensor (b)Ti heater (c) Metal line (d)SU-8 (e)Epoxy Glue (f)Glass Substrate (g)PMMA Plate...…..67 圖4-1 實驗量測儀器設備示意圖: (a) 實驗晶片 (b) 氣體流量控制器 (c) 氣源預熱系統 (d) 氣體鋼瓶 (e) 個人電腦 (f) 資料擷取器 (g) 電源供應器 (h) 風洞。………………………………………….............................68 圖4-2 (a) 微溫度感測器之溫度-電阻關係圖 (b) 微加熱器之溫度-電阻關係圖………………...………………………………………………………..69 圖5-1 Epoxy Resin攪拌不均,導致做背向蝕刻時,產生裂痕,使得微加熱器與微溫度感測器結構受損…………………...………………………..70 圖5-2 SU-8 噴流槽出口結構圖………………….……………………....71 圖5-3 SU-8 噴流槽結構厚度量測圖……………………………….…..71 圖5-5主流場流場與晶片量測平台之示意圖 (a) 原本量測平台架設 (b) 於平台前端架設ㄧ斜板…………………………………………………….72 圖5-5 不同吹洩比下之薄膜冷卻效益量測圖……….…………………..73 圖5-6 不同x/yc下,冷卻效益與吹洩比之關係圖……………...……….74 圖5-7 PMMA蓋板磨薄前後之冷卻效益比較圖 (a) 蓋板磨薄前 (b)蓋板磨薄後…………………………………………………………………….75 圖5-8 實驗量測值與文獻比較圖………………………………………...76 圖5-9 冷卻效益之實驗值與Cur-fitting所得之經驗關係式[t/yc = 16]…...77 圖5-10 冷卻效益之實驗值與Cur-fitting所得之經驗關係式[t/yc= 10]…..77 圖5-11 冷卻效益之實驗值與Cur-fitting所得之經驗關係式 [10 ≦t/yc≦ 16]……………………………………………………………………………78

    [1] Simoneau, R. J. and Simon, F. F., “Progress towards Understanding and Predicting Heat Transfer in the Turbine Gas Path,” Int J. Heat and Fluid Flow, Vol.14, No. 2, pp.106-128, 1993.
    [2] Goldstain, R.J., “Film Cooling,”, in Advances in Heat Transfer, Vol.7 pp.321-379, Academic Press N.Y., 1971.
    [3] Lefebvre, A.H., “Gas Turbine Combustion”, Hemisphere Publishing Corp. pp.286-320, 1983.
    [4] Chen, S.J. and Fu-Kang Tsou, “Experimental Studies of Injection-Stream Turbulence on Film Cooling Using a Short-Duration Technique”, ASME 86-WA/HT-47, 1986.
    [5] Ko, S.Y. and Liu, D.Y., “Experimental Investigations on Effectiveness, Heat Transfer Coefficient, and Turbulence of Film Cooling”, AIAA J. Vol.18, No.8 pp.907-912, 1980.
    [6] Nina, M.N.R. and Whitelaw, J.H., “The Effectiveness of Film Cooling with Three-Dimensional Slot Geometries”, ASME J. of Eng. For Power, Vol.93 pp.425-430, 1971.
    [7] Hartnett, J.P., Birkebak, R.C. and Eckert, E.R.G., “Velocity Distributions, Temperature Distributions, Effectiveness and Heat Transfer for Air Injected through a Tangential Slot into a Turbulent Boundary Layer”, J. of Heat Transfer, Vol.83 pp.293-306, 1961.
    [8] Seban, R. A. and Back, L. H., “Effectiveness and Heat Transfer for a Turbulent Boundary Layer with Tangential Injection and Variable Free Stream Velocity”, ASME Journal of Heat Transfer, Vol.84, pp.235, 1962.
    [9] Hay, N.D. Lampard and Saluja, C.L., “Effects of the Condition of the Approach Boundary Layer and Mainstream Pressure Gradients on the Heat Transfer Coefficient on Film Cooling Surface”, ASME J. of Engineering for Gas Turbines and Power Vol.170 pp.99-103, 1985.
    [10] Moretti, P.M., and Kays, W.M., “Heat Transfer to a Turbulent Boundary Layer With Varying Freestream Velocity and Varying Surface Temperature – an Experimental Study”, J. Heat Mass Transfer, pp.1187-1202, 1965.
    [11] Escudier, M.P., and Whitelaw, J.H., “The Influence of Strong Adverse Pressure Gradients on Effectiveness of Film Cooling”, J. Heat Mass Transfer, Vol. 11, pp. 1289-1292, 1968.
    [12] Han, Z.X. and Liu, S., Liu, J.J., Zhou, S.J. and Liu, J., "Experimental Research on Film Cooling Characteristics at Different Blowing Ratios", Proceedings of the Chinese Society of Electrical Engineering, Vol.25, pp. 91-96, 2005.
    [13] Foster, N.W. and Lampard, D., “Effect of Density and Velocity Ratio on Discrete Hole Film Cooling”, AIAA J., Vol. 13, pp.1112-1114, 1975.
    [14] AI-Hamadi, A.K., Jubran, B.A., and Theodoridis, G., "Turbulence Intensity Effects on Film Cooling and Heat Transfer from Compound Angle Holes with Particular Application to Gas Turbine Blades", Energy Conversion and Management, pp.1449-1457, 1998.
    [15] Marek, C.J. and Tacina, R. R., “Effect of Free-Stream Turbulence on Film Cooling”, NASA TN D-7958, 1975.
    [16] Carlson, L.W. and Talmor, E., “Gaseous Film Cooling at Various Degrees of Hot-Gas Acceleration and Turbulence Levels”, Int. J. Heat Mass Transfer, Vol. 11, pp.1695-1713, 1968.
    [17] Kacker, S.C. and Whitelaw, J.H., “An Experimental Investigation of the Influence of Slot-Lip-Thickness on the Impervious-Wall Effectiveness of the Uniform-Density, Two-Dimensional Wall Jet”, J. Heat Transfer, Vol. 12, pp. 1196-1201, 1969.
    [18] Kacker, S.C. and Whitelaw, J.H., “The Effect of Slot Height and Slot Turbulence on the Effectiveness of the Uniform-Density, Two-Dimensional Wall-Jet”, J. Heat Transfer, Vol. 90, pp.469-475, 1968.
    [19] Sivasegaram, S. and Whitelaw, J.H., “Film Cooling Slots: The Importance of Lip Thickness and Injection Angle”, J. Mech. Eng. Sci., Vol. 11, pp.321-379, 1969.
    [20] Taslim, M.E., Spring, S.D. and Mehiman, B. P., "Experimental Investigation of Film Cooling Effectiveness for Slots of Various Exit Geometries", Journal of Thermophysics and Heat Transfer, pp.302-307, 1992.
    [21] Hyams, D,G., McGovern, K.T. and Leylek, J. H., "Effects of Geometry on Slot -jet Flim Cooling Performance", ASME, 1996.
    [22] Bittinger, G, Schulz, A., and Wittig, S., "Film Cooling Effectiveness and Heat transfer Coefficients for Slot Injection at High Blowing Ratios", American Society of Mechanical Engineers, pp.1-9, 1994.
    [23] Thole, K.A., Gritsch, M., Schulz, A., and Wittig, S., “Flow-field Measurements for Film-Cooling Holes with Expanded Exits,” ASME J. Turbomachhinery, Vol. 120, pp.327-336, 1998.
    [24] Thole, K. A., Gritsch, M., Schulz, A., and Wittig, S., 1997, “Effect of a Crossflow at the Entrance to a Film-Cooling Hole”, ASME J. Fluids Eng., 119, pp. 533–540.
    [25] Rhee, D.H., Lee, Y.S., and Cho, H.H., "Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes", ASME, International Gas Turbine Institute, Vol. 3, pp. 21-32, 2002.
    [26] Ekkad, S. V., Zapata, D., and Han, J. C., "Heat Transfer Coefficients over a Flat Surface With Air and CO2 Injection through Compound Angle Holes Using a Transient Liquid Crystal Image Method", ASME J. Turbomach., 119, pp. 580–586, 1995.
    [27] Ammari, H.D., Hay, N., and Lampard, D., “The Effect of Density Ratio on the Heat Transfer Coefficient from a Film-Cooled Flat Plate”, ASME J. of Turbomachinery, Vol. 112, pp.444-450, 1990.
    [28] Sinha, A.K., Bogard, D.G., and Crawford, M.E., “Film-Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio”, ASME J. Turbomachinery, Vol. 113, pp.442-449, 1991.
    [29] Mayle, R. E., and Metzger, D. E., "Heat Transfer at the Tip of an Unshrouded Turbine Blade", Proc. Seventh Int. Heat Transfer Conf., Hemisphere Pub., pp. 87–92, 1982.
    [30] Seban, R.A., “Heat Transfer and Effectiveness for a Turbulent Boundary Layer with Tangential Fluid Injection”, ASME J. Heat Transfer, 82, pp. 303–312, 1960.
    [31] Seban, R. A., and Back, L. H., “Velocity and Temperature Profiles in a Wall Jet”, ASME J. Heat Transfer, Vol.3, pp. 255–265, 1961.
    [32] Metzger, D. E., Baltzer, R. T., Takeuchi, D. I., and Kuenstler, P. A., “Heat Transfer to Film Cooled Combustion Chamber Liners”, ASME Paper No. 72-WA/HT-32, 1972.
    [33] Gritsch, M., Schulz, A. and Wittig, S., “Film-Cooling Holes with Expanded Exits: Near-hole Heat Transfer Coefficients”, Int. J. Heat and Fluid Flow, Vol. 21, pp.146-155, 2000.
    [34] Jung, I. S. and Lee, J. S., “Effects of Orientation Angles on Film Cooling over a Flat Plate: Boundary Layer Temperature Distributions and Adiabatic Film Cooling Effectiveness”, ASME J. Turbomachinery, Vol. 122, pp.153-160, 2000.
    [35] Yang, J. T., Tsai, B. B., and Tsai, G. L., “Separated-Reattaching Flow 118 over a Back-step with Uniform Normal Mass Bleed”, J. Fluid Eng., Vol.116, 29-35, 1994.
    [36] Cheng, Y. C., Hwang, G. J., and Ng, M. L., “Developing Laminar Flow and Heat Transfer in a Rectangular Duct with One-Walled Injection and Suction”, Int. J. Heat Mass Transfer, Vol.37, 2601-2613, 1994.
    [37] Kitamura, K., and Kimura, F., “Heat Transfer and Fluid Flow of Natural
    Convection Adjacent to Upward-facing Horizontal Plates”, Int. J. Heat Mass
    Transfer, Vol.38, 3149-3159, 1993.
    [38] Zubel, I., Kramkowska, M. “The Effect of Isopropyl Alcohol on Etching Rate and Roughness of (1 0 0) Si Surface Etched in KOH and TMAH Solutions”, Sens. Actuators A 93, pp.135-147, 2001.
    [39] Obermeier, E., and Kopystynski, P., “Polysilicon as a Material for Microsensor Applications”, Sensors. Actuators A 30, pp. 149-155, 1992.
    [40] Liu, C.W. and Gau, C., “Design and Fabrication Development of a Micro Flow Heated Channel with Measurements of the inside Micro-Scale Flow and Heat Transfer Process”, Biosensors and Bioelectronics, Vol. 20, No. 1, pp.91-101, 2004. (EI, SCI)
    [41] Shen, C.H. and Gau, C., “Thermal Chip Fabrication with Arrays of Sensors and Heaters for Micro-Scale Impingement Cooling Heat Transfer Analysis and Measurements,” Biosensors and Bioelectronics, Vol. 20, No. 1, pp.103-114, 2004. (EI, SCI)
    [42] Http:// www.microchem.com.
    [43] Mayle, R. E., and Camarata, F. J., “Mutihole Cooling Film Effectiveness and Heat Transfer,” ASME J. Heat Transfer, 97(2), pp. 534–538, 1975.
    [44] Sasaki, M., Takahara, K., Kumagai, T., and Hanano, M., “Film Cooling Effectiveness for Injection From Multirow Holes,” ASME J. Eng. Power, 101(1), pp. 101–108, 1979.
    [45] Martiny, M., Schulz, A., and Wittig, S., “Full-Coverage Film Cooling Investigations: Adiabatic Wall Temperatures and Flow Visualization,” ASME Paper No. 95-WA/HT-4, 1995.
    [46] Andrews, G. E., Khalifa, I. M., Asere, A. A., and Bazdidi-Tehrani, F., “Full Coverage Effusion Film Cooling with Inclined Holes,” ASME Paper No.95-GT-274, 1995.
    [47] Lee, H-W, Park, J. J. and Lee, J. S., “Flow Visualization and Film Cooling Effectiveness Measurements around Shaped Holes with Compound Angle Orientations”, Int. J. Heat and Mass Transfer, Vol. 45, pp.145-156, 2002.
    [48] Lutum, E., Wolfersdorf, J. von, Semmler, K., Dittmar, J. and Weigand, B., “An Experimental Investigation of Film Cooling on a Convex Surface Subjected to Favourable Pressure Gradient Flow”, Int. J. Heat and Mass Transfer, Vol. 44, pp.939-951, 2001.
    [49] Garg, V. K. and Gaugler, R. E., “Prediction of Film Cooling on Turbine Blade Airfoils”, ASME Paper No. 94-GT-16, 1994.
    [50] Garg, V. K. and Gaugler, R. E., “Leading Edge Film-Cooling Effects on Turbine Blade Heat Transfer”, Numerical Heat Transfer, Part A, Vol. 30, pp.165-187, 1996.
    [51] Garg, V. K. and Gaugler, R. E., “Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades”, Int. J. Heat and Mass Transfer, Vol. 40, No. 2, pp.435-445, 1997.
    [52] Garg, V. K., “Heat Transfer on a Film-Cooled Rotating Blade”, Int. J. Heat and Fluid Flow, Vol. 21, pp.134-145, 2000.
    [53] Garg, V. K., “Modeling Film-coolant Flow Characteristics at the Exit of Showerhead Holes”, Int. J. Heat and Fluid Flow, Vol. 22, pp.134-142, 2001.
    [54] Arnone, A., Liou, M. —S. and Povinelli, L. A., “Multigrid Calcu1ation of Three-Dimensional Viscous Cascade Flows,” AIAA Paper 91-3238, 1991.

    下載圖示 校內:2007-08-31公開
    校外:2007-08-31公開
    QR CODE