簡易檢索 / 詳目顯示

研究生: 張正達
Chang, Jan-Da
論文名稱: 茶與酒中微量元素濃度探討與環境之相互關係
Environmental implications of trace element concentrations in tea and wine
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系碩士在職專班
Department of Earth Sciences (on the job class)
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 66
中文關鍵詞: 微量元素茶葉
外文關鍵詞: tea, wine, trace element
相關次數: 點閱:89下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物因吸收不同土壤及天水,其所含特徵元素亦不盡相同,故可藉以了解該物質是否為當地產物,並可應用於判別酒類與茶葉之出處是否正確的依據。分析結果顯示,不同區域的植物的生理必需元素濃度相近(如N、P、K、Ca、Mg、S、Cu及Al等),表示種屬間引起的元素選擇性對於酒類與茶葉並不顯著;然而Ba及B濃度則呈現極端的差異,可能與不同地區的土壤或天水的性質,或與不同來源的貢獻比例有關,本研究藉統計軟體來釐清各元素分佈之主要影響及次要影響因子,依據文獻推估來源所代表之意義。我們瞭解Pb所代表的是污染的指標,所以三峽與凍頂茶海拔較低所受到的污染也相對較嚴重(三峽=3.955ppb、凍頂山=3.925ppb),其次為杉林溪(杉林溪=2.173ppb)之後才是潽洱茶、武陵茶與阿里山(潽洱茶=1.813ppb、武陵茶=1.230ppb、阿里山=1.819ppb),最後才是奇萊山與(奇萊山=0.533ppb、),武陵茶海拔雖高於杉林溪其Pb卻較高,推估可能該地區為觀光地區故車輛污染較為嚴重所導致。茶葉產中低海拔茶區則B的含量較高相對其離海距離較近(三峽=103.9ppb、凍頂山=103.3ppb、阿里山=140.5ppb、潽洱=131ppb),如在高海拔茶區其B含量較低(奇萊山=72.45ppb、杉林溪=66.65ppb、武陵茶=78.94ppb)。在茶葉中As幾乎看不到,而酒中含As的濃度以Heinken=20.2ppb最高;其次TsingTao=19.5ppb;在其次Taiwan=18.9ppb而含量最低者為Whiskey=3.99ppb。
    而人體健康危害程度評估方面,依據毒性物質致癌的程度計算,結果顯示長期(三十年)飲用各種酒類之成年人,致癌風險較於未飲酒者高出6.8至67.1倍;此亦需配合日常生活飲食情況評估,才能獲得較客觀的健康風險常數。綜觀茶葉與酒之分析結果,就健康危害度而言可提供每日適合飲用量之依據,就環境而言將可系統性的評估茶葉與酒類的微量元素含量以及可能的攝取來源,並提供相關研究作為參考訊息。

    Various elements and compounds in nature environments are utiltzed during plant growth. It is, therefore,possible to use fingerprint of there elements in plants to identify makers of different wine and tea products locally and worldwide. Previous studies have shown elements of N, P, K, Ca, Mg, S, Cu and Al in plant extraction showed no distinguishable pattern. In contrast, Ba and B do show large variation at different localities, possibly due to groundwater, soils or meteoric contributions. This study aims to use statistical methods to categorize major and trace element distributions in wine and tea products collected from various locations and to understand possible causes in elemental patterns.
    Pb is a common air-pollution indicator and is sensitive to the degree of anthropogenic influence. In our study area, Shanshia and Dongding Mountain located just above sea level and have the highest Pb concentration in tea extraction (Shanshia, 3.96 ppb and Dongding, 3.93 ppb). The Shanlinshi tea, Puer tea, Wuling tea, Ali M and Chilai M has 2.17, 1.81, 1.23, 1.82 ppb and 0.53 ppb, respectively. Although Wuling tea grows at high altitude, its Pb concentration is higher than Shanlinshi, possibly due to heavy tourist activity. Sea salt is a major source for B, areas with low altitude and close to the coastal region will receive more B (for instance Shanshia, Dongding, Ali M and Puer tea has 104, 103, 141 and 131 ppb, respectively), whereashigh mountain tea show lower B in Chilai M, Shanlinshi and Wuling tea B of 72.5, 66.7 and 78.9 ppb respectively. Only trace amount of As found in tea, however, low alcohol beer ofHeineken, Tsing Tao, Taiwan Beer and Whiskey has As of 20.2, 19.5 18.9 and 3.99 ppb, respectively.
    These preliminary results were used to access if these beverages are carcinogenicand harmful to human health. The calculation indicated that adults who drink, regularly for more than thirty years will expose to cancer with 6.8~67.1 times high erprobability than those who did not drink. This result is consistent with nutrition experiments and deserves further evaluation in the future. In summary, this study systematically evaluated possible source of elemental patterns in wine and tea that is routinely consumed in our daily life.

    目錄 ……………………………………………………………… i 表目錄 ……………………………………………………………… iii 圖目錄 ……………………………………………………………… iv 一、前言 1.1 研究背景 ………………………………………………… 1 1.2 文獻探討 1.2.1 環境中之微量元素 …………………………………… 3 1.2.2 茶葉與酒中之微量元素 ……………………………… 6 1.2.3 微量元素對人體的影響 ……………………………… 7 1.3 研究動機及目的 ………………………………………… 11 二、研究方法 2.1 樣品採集 ………………………………………………… 12 2.1.1 區域地質背景 ………………………………………… 12 2.1.2 樣品採集 ……………………………………………… 18 2.2 研究流程 ………………………………………………… 18 2.3 樣品前處理 ……………………………………………… 20 2.3.1 茶葉樣品前處理 ……………………………………… 20 2.3.2 酒類樣品前處理 ……………………………………… 20 2.4 儀器分析 ………………………………………………… 22 2.4.1 茶葉與酒中微量元素的分析方法 …………………… 27 2.4.2 酒類分析方法與步驟 ……………………………… 29 2.4.3 茶葉分析方法與步驟 ……………………………… 29 2.5 ICP-MS常見之問題 …………………………………… 31 2.6 多變量分析之原理 ……………………………………… 31 2.6.1 主成分分析 ………………………………………… 32 2.6.2 因子分析 ……………………………………………… 33 2.7 人體健康風險評估之原理 ……………………………… 36 三、實驗結果 3.1 茶葉分析結果 …………………………………………… 38 3.2 酒類分析結果 …………………………………………… 41 四、討論 4.1 茶葉分析結果 …………………………………………… 43 4.2 酒類分析結果 …………………………………………… 50 4.3 人體健康風險評估 ……………………………………… 53 4.3.1 非致癌性物質之標的危害商數 ……………………… 53 4.3.2 致癌性物質之終身致癌風險 ………………………… 56 五、結論 ………………………………………………………… 59 六、參考文獻 …………………………………………………… 61 附錄一、茶葉微量元素濃度表 附錄二、各類酒品微量元素濃度表

    中文書籍
    1. 江旭禎、楊惠珍,質譜分析術專輯,行政院國家科學委員會精密儀器發展中心,台北,343-376,1992
    2. 張祖琰,精妙的元素分析法-感應耦合電漿-原子發射光譜分析法(ICP-AES)工業技術,1985
    3. 趙玫珺、陳維昭。實用營養學。華杏出版股份有限公司,1992;163-207
    4. 樊邦棠,環境工程化學,科技圖書股份有限公司,pp.311-318,1994。
    5. 張仁福。實用環境化學。藝軒出版社
    6. 陳靜生。水環境化學。曉園出版社
    7. 行政院農委會茶葉改良場編印,茶作栽培技術。
    8. 林清山,「多變項分析統計法」,東華書局,1988。
    9. 陳耀茂,「多變量分析的SPSS使用手冊」,鼎茂圖書出版股份有限公司,第1-89頁,2004。
    10. 林傑斌、劉明德,「SPSS 10.0與統計模式建構」,文魁出版社,2001。

    中文期刊、論文
    1. 楊紅梅、段桂玲、呂紅、劉焰、章麗娟、梅玉萍、馬麗豔、路遠發,茶葉中鉛同位素比值測定法,宜昌地質礦產研究所 湖北 宜昌,1994
    2. 蕭富燦:某鉛蓄電池廠之鉛曝露途徑研究。國立台灣大學職業醫學與工業衛生研究所碩士論文,1998。
    3. 林佳儀,韓柏檉。台北市民飲食中毒性金屬之總暴露評估。國科會八十八年度大專生參與專題研究計畫成果報告,台北:台北醫學院公共衛生學系,1999。
    4. 林慧華,廢棄物焚化過程中重金屬反應特性之研究-金屬氯化物形成潛能之研究,淡江大學水資源暨環境工程研究所,碩士論文,1992
    5. 邱禮弘,葡萄之合理化施肥技術,行政院農委會台中區農業改良場,2005

    英文期刊
    1. Moreda-Piñeiro A., Fisher A., and Hill S. J. (2003) The classification of tea according to region of origin using pattern recognition techniques and trace metal data, Food Composition and Analysis,16,195-211.
    2. Benjamin G.Lead(1990). Clinical in Labtorary Medicine:441-457
    3. Baxter M.J.,Crews H.M.,Dennis M.J.,Ian Goodall et.al(1997).,The determination of authenticity of wine from its trace element composition. Elsevier Science;60:443-450
    4. Casteel S.W., Cowart R.P., Weis C.P. et al. (1997), Bioavailability of Lead to Juvenile Swine Dosed with Soil from the Smuggler Mountain NPL Site of Aspen, Colordo. Fundam. Appl. Toxicol.;36:177-187
    5. John Wiely & Sons, Inc,(1998) , Chris Kent, Basic of Toxicology
    6. Douglas S. J., Charles D. E., and Russell F. A., New isotopic evidence for chronic lead contamination in the San Francisco Bay estuary system: Implications for the persistence of past industrial lead emissions in the biosphere, PNAS, Oct 2000
    7. Eldered,R.A.,Cahill,T.A. and Flochini, R.G. (1997), Composition of PM2.5 and PM10 Aerosols in the IMPROVE Network, Journal of Air Waste Management Association.Elsevier Science. 194-203
    8. Fowler B.A. (1992), Environmental Health Perspectives. Elsevier Science, 100:57
    9. Forrer R., Gautschi K., Lutz H. (2001), Biological Trace Element Research, Elsevier Science. 80:77
    10. Hostynek J.J.,Hinz R.S.,Lorence C.R.,Price M.,and Guy R.H. Metals and Skin.Crit Rev Toxicol (1993);23:171-235
    11. Houk R.S.,Fassel V.A.,Flesch G.D.,Svec H.J.,Gray A.L. and Taylor C.E. (1980),Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements, Elsevier Science.,.2283-2289
    12. Hrudey S.E., Chen W. and Rousseaux C.G.(1996). Lead. Exposure Routes and Bioavailability Factors for Selected Contaminants. Bioavailability in Environmental Risk Assessment CRC Press, Inc. Lewis Publishers,
    13. James,P.S.,Raveendra,V.I. and Timothy,E.F. (1995),Multivariate Statistical Examination of Spatial and Temporal Patters of Heavy Metal Contamination in New Bedford Harbor Marine Sediment, Environmental Science and Technology, Elsevier Science ,Vol.29,pp.1781-1788.
    14. Kment P. , Mihaljevič M. ,Ettler V., Šebek O., Strnad L., Rohlová L. (2005). Differentiation of Czech wines using multielement composition – A comparison with vineyard soil. Elsevier Science, 157–165.
    15. Marcosa A., Fishera A., Reab G., Hill S.J., Preliminary study using trace element concentrations and a chemometrics approach to determine the geographical origin of tea,JAAS,(1998),Vol.13,521-525
    16. McKinnon, A. J., Cattrall, R. W., and Scollary, G. R. (1992). Aluminium in wine – its measurement and identification of major sources. American Journal of Enology and Viticulture, Elsevier Science, 166–170.
    17. Muniz C.S., Marchante-Gayon J.M., Garcia Alonso J.I., (1999) A.Sanz-Medel,JAAS, 14:193
    18. Mulholland,J.A. and Sarofim,A.F. (1991), The Mechanism of Inorganic Particles Formation during Suspension Heating of Simulated Wastes, Environmental Science and Technology, Elsevier Science.268-274.
    19. Myors R.B.,Hearn R.,Mackay L.G. (2005),The high-accuracy analysis of lead in wine by wxact-matching isotope diluteion mass spectrum using ICP-MS,JAAS, ,20,216-219
    20. Nikolakaki,S.G., Kontos,N.K., Katsanos,A.A.(2002). Trace element analysis of Cretan wines and wine products,285,155-163
    21. Nriagu, J.O. and Pacyna, J.M. (1988), Quantitative Assessment of Worldwide Contamination of Air, Water and Solid by Trace Metals, Nature,323,134-139.
    22. Ramachandran, V., & D_Souza, T. J.. Plant uptake of cadmium, zinc, and manganese in soils amended with sewage sludge and city compost. Bulletin of Environmental Contamination and Toxicology, 61, 347–354,(1998)
    23. Rita Cornelis(1996), Annals Of Clinical and Laboratory Science,26:3252
    24. Salvo V., Pera L.,Dibella G., Nicotina M., and Dugo G.,(2003). Influence of Different Mineral and Organic Pesticide Treatments on Cd(II), Cu(II), Pb(II), and Zn(II) Contents Determined by Derivative Potentiometric Stripping Analysis in Italian White and Red Wines, Elsevier Science, 51, 10901094.
    25. Singh, N. Pandey , V., Misra ,J., Yunus ,M. and Ahmad ,K.J. (1997), Atmospheric Lead Pollution from Vehicular Emissions-Measurements in Plants, Soil and Milk Samples, Environmental Monitoring and Assessment, Elsevier Science. 9-19.
    26. U.S.Environment Protection Agency (2003) Region Risk-Based Concentration Table,USEPA,Region III 841 Chestnut street, Philadelphia,Pennsylvania.

    下載圖示 校內:2008-06-27公開
    校外:2010-06-27公開
    QR CODE