簡易檢索 / 詳目顯示

研究生: 陳秀雯
Chen, Hsiu-Wen
論文名稱: 利用Boehmite分散及包覆θ-Al2O3粉 生產30-50 nmα-Al2O3
Preparation of 30-50 nm α-Al2O3 by dispersing and coating θ-Al2O3 powder with boehmite
指導教授: 顏富士
Yen, Fu-Su
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 60
中文關鍵詞: 相轉換分散氧化鋁
外文關鍵詞: Alumina, phase transformation
相關次數: 點閱:80下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究之目的為利用Boehmite包覆θ-Al2O3粒子,造成均一粒徑之θ-Al2O3粒子。此均一粒徑之θ-粒子可同時達到相轉換臨界晶徑dcθ,使相轉換反應時間集中,有助於生成大量30-50 nm α-粒子。
      本研究利用混合不同比例之Boehmite (50、56、60 wt %) 與θ-Al2O3,經由球磨分散之混合系統漿料,調整pH值量測其粒徑分佈,以觀察其混合系統中Boehmite與θ-Al2O3粒子之關係。將此混合系統粉末以DTA觀察其熱行為,並以10℃/min 升溫至1100-1200℃ 間淬冷以保留樣品特性,此不同溫度淬冷之樣品觀察其α-生成量與比表面積之關係。
      研究結果顯示:Boehmite之添加量有一最適值56 wt %,且在pH~4方可形成適當大小之Boehmite包覆θ-Al2O3粒子 (~30 nm),此30 nm 的粒子由於其接近相變臨界晶徑dcθ,於相轉換反應發生時可同時相變,有利於生成大量30-50 nm 之α-粒子。過多或過少之Boehmite會導致此包覆粒子變大 (~50 nm),導致反應時間延長,Tp溫度較高。

      The purpose of this study was to obtain uniform q-Al2O3 particles by preparing q-Al2O3 coated with boehmite. The uniform q-Al2O3 particles were helpful to prepare a large number of a-Al2O3 crystallites with size ranging from 30 to 50 nm because they can grow to critical crystallite size and then transformed simultaneously.
      In this present work, the relationships between boehmite and q-Al2O3 particles in the slurries that consist of q-Al2O3 powders with different amount of boehmite addition (50, 56, 60 wt %) were investigated. The mixed slurries were dispersed by ball milling. In addition, the pH values were adjusted and the particle size distribution were measured. The thermal behavior of the samples, which were form the mixed slurries, was examined by differential thermal analysis (DTA). The samples were thermally treated to 1100-1200℃ with a heating rate of 10℃/min and then quenched to room temperature. The relationships of a-formation and BET surface areas of these quenched samples were investigated.
      It was found that there was a moderate boehmite addition (56 wt %) and the moderate size of q-Al2O3 particles coated with boehmite (about 30 nm) was at pH~4. Because q-Al2O3 powders with specific particle size (~30 nm) were close to the critical size dcq and then transformed to a-phase simultaneously, it’s helpful to form a large number of a-Al2O3 crystallites with size ranging from 30 to 50 nm. Excess or insufficient amount of boehmite caused the coated particles coarser and leaded to a longer reaction time or a higher transformation temperature (Tp).

    目錄 摘要 I Abstract II 致謝 III 目錄 IV List of Tables VII List of Figures VIII 附錄 XI 第一章 緒論 1 1.1 前言 1 1.2 θ→α-Al2O3相轉換 2 1.3 研究目的 3 第二章 理論基礎與前人研究 7 2.1 Boehmite和過渡相氧化鋁之結晶相 7 2.1.1 Boehmite的結晶相 7 2.1.2 過渡相氧化鋁的結晶相 7 2.2 Boehmite對陶瓷漿料分散性之影響 8 2.3 Boehmite對氧化鋁包覆之可行性 11 2.4 相變過程中θ-Al2O3粒徑的變化 12 2.4.1 相轉換的熱差行為特性 12 2.4.2 θ-Al2O3晶徑的成長和相變臨界晶徑 14 2.4.3 α’-和θ’-Al2O3 15 第三章 實驗方法與步驟 16 3.1 實驗構想與設計 16 3.1.1 30-50 nm α-Al2O3 16 3.1.2 Boehmite包覆θ-Al2O3 16 3.2 實驗原料 21 3.2.1 Boehmite 21 3.2.2 θ-Al2O3 25 3.3 實驗步驟 25 3.3.1 三種θ-Al2O3晶粒與Boehmite膠之混合系統 25 3.3.2 漿料系統之pH值 25 3.3.3 實驗流程 25 3.4 特性分析 28 3.4.1 粉末結晶相分析 28 3.4.2 熱差分析 28 3.4.3 晶徑及粒徑分析 28 3.4.4 α-生成量定量分析 31 3.4.5 粒徑分佈 31 3.4.6 顯微影像及結構分析 31 第四章 結果與討論 34 4.1 混合系統中Boehmite與θ-Al2O3之關係 34 4.1.1 pH值對漿料系統之影響 34 4.1.2 可被分散之θ-粒子在系統中之大小 36 4.1.3 Boehmite對θ-Al2O3包覆之可能性 36 4.1.4 Boehmite添加量對Boehmite包覆θ-粒子大小的影響 39 4.2 混合粉末之熱行為 41 4.2.1 包覆厚度對相轉換的影響 41 4.2.2 造成相變延後之粗粒θ-粒子的來源 41 4.3 30-50 nm α-粒子的觀察 44 4-4 SEM 及 TEM 照片觀察 46 4-4-1 Boehmite包覆之觀察 46 4-4-2 30-50 nm α-粒子 46 第五章 結論 54 參考文獻 55 Appendix I The data sheet of boehmite sol as raw material used in this experiment 59

    1. T. G. Peason, The Chemical Background of the Aluminum Industry, Monograph of the Royal Institute of Chemistry, London, 1995.
    2. 汪建民,陶瓷技術手冊 (下),中華民國粉末冶金協會,中華民國 83 年。
    3. R. W. Siegel, S. Ramasamy, H. Hahn, R. Gronsky, Z. Q. Li, and T. Lu, “Synthesis, Characterization, and Properties of Nanophase TiO2,” J. Mater. Res., 3 1367-1372 (1988).
    4. G. L. Messing and M. Kumagai, “Low-Temperature Sintering of α-Alumina Seeded Boehmite Gels,” Am. Ceram. Soc. Bull., 73 88-91 (1994).
    5. J. L. MaArdle and G. L. Messing, “Seeding with γ-Alumina for Transformation and Microstructure Control in Boehmite-Derived α-Alumina,” J. Am. Ceram. Soc., 69 C98-101 (1986).
    6. T. G. Nieh, C. M. McNally, and J. Wadsworth, “Superplasticity in Intermetallic Alloys and Ceramics,” JOM, 41 31-25 (1989).
    7. P. A. Badkar and J. E. Bailey, “The Mechanism of Simultaneous Sintering and Phase Transformation in Alumina,” J. Mater. Sci., 11 1794-1706 (1976).
    8. I. I. M. Tijburg, H. D. Bruin, P. A. Elberse, and W. Geus, “Sintering of Pseudo-Boehmite and α-Al2O3,” J. Mater. Sci., 26 5945-5949 (1991).
    9. M. W. Chase, Jr. C. A. Davies, J. R. Doweny, Jr. Fruip, R. R. McDonalds, and A. N. Syverud, JANAF Thermochemical Tables, 3rd ed. Am. Chem. Soc., Washington, DC., 1986.
    10. F. W. Dynys and J. W. Holloran, “Alpha Alumina Formation in Alum Derived Gamma Alumina,” J. Am. Ceram. Soc., 65 442-448 (1982).
    11. H. L. Wen and F. S. Yen, “Growth Characteristics of Boehmite-Derived Ultrafine Theta and Alpha-Alumina Particles During Transformation,” J. Cryst. Growth, 208 696-708 (2000).
    12. 鄭功杰,氧化鋁微粉之基礎晶徑觀察,國立成功大學資源工程研究所,碩士論文,中華民國 89 年 6 月。
    13. P. L. Chang, F. S. Yen, K. C. Cheng, and H. L. Wen, “Examination on the Critical and Primary Crystallite Sizes During θ- to α-Phase Transformation on Ultrafine Alumina Powders,” Nano Letters, 5 253-261 (2001).
    14. 溫惠玲,由Boehmite製得之氧化鋁粉末的θ→α-Al2O3相轉換,國立成功大學資源工程研究所,博士論文,中華民國 89 年 1 月。
    15. 顏富士、游佩青,以資源生成原理製作的幾種奈米級α-氧化鋁粉末,第一屆資源工程研討會論文集,中華民國 93 年 3 月。
    16. Tsai et al., United States Patent, Patent Number: 6,037,260.
    17. Y. Hirata, “Theoretical Aspects of Colloidal Processing,” Ceram. Int., 23 93-98 (1997).
    18. B. E. Novich and D. H. Pyatt, “Consolidation Behavior of High-Performance Ceramic Suspensions,” J. Am. Ceram. Soc., 73 207-212 (1990).
    19. B. V. Velamakanni, J. C. Chang, F. F. Lange, and D. S. Pearson, “New Method for Efficient Colloidal Particle Packing via Modulation of Repulsive Lubricating Hydration Forces,” Langmuir, 6 1323-1325 (1990).
    20. J. Cesarano Ⅲ and I. A. Aksay, “Processing of Highly Concentrated Aqueous α-Alumina Suspensions Stabilized with Polyelectrolytes,” J. Am. Ceram. Soc., 71 1062-1067 (1988).
    21. P. C. Hidber, T. J. Graule, and L. J. Grauckler, “Rheology and Consolidation of Colloidal Alumina-Coated Silicon Nitride Suspensions,” J. Am. Ceram. Soc., 79 1155-1162 (1996).
    22. R. G. Horn, “Surface Forces and Their Action in Ceramic Materials,” J. Am. Ceram. Soc., 73 1117-1135 (1990).
    23. B. Kindl, D. J. Carlsson, Y. Deslandes, and J. M. Hoddenbagh, “Preparation of α-Alumina Ceramics: The Use of Boehmite Sols as Dispersing Agents,” Ceram. Int., 17 347-350 (1991).
    24. S. Anathakumar, V. Raja, and K. G. K. Warrier, “Effect of Nanoparticulate Boehmite Sol as A Dispersant for Slurry Compaction of Alumina Ceramics” Mater. Lett., 43 174-179 (2000).
    25. S. T. Kwon and G. L. Messing, “Constrained Densification in Boehmite-Alumina Mixtures for the Fabrication of Porous Alumina Ceramics,” J. Mater. Sci., 33 913-921 (1998).
    26. B. E. Yoldas, “Alumina Sol Preparation from Alkoxides,” J. Am. Ceram. Soc. Bull., 54 289 (1975).
    27. W. H. Shin, L. L. Pwu, and A. A. Tseng, “Boehmite Coating as Consolidation and Sintering Aids in Aqueous Silicon Nitride Processing,” J. Am. Ceram. Soc., 78 1252-1260 (1995).
    28. C. Y. Yang and W. H. Shin, “Effect of Acid on the Coating of Boehmite onto Silicon Carbide Particles in Aqueous Suspensions,” J. Am. Ceram. Soc., 82 436-440 (1990).
    29. C. Y. Yang and W. H. Shin, “Gelation, Consolidation, and Rheological Properties of Boehmite-Coated Silicon Carbide Suspensions,” J. Am. Ceram. Soc., 83 1879-1884 (2000).

    30. C. Y. Yang and W. H. Shin “Effects of Boehmite-Coating Thickness on the Consolidation and Rheological Properties of Boehmite-Coated SiC Suspensions,” J. Am. Ceram. Soc., 84 2834-2840 (2001).
    31. M. S. Tsai., C. H. Li, M. H. Li, and W. Y. Lin, “Suspension and Rheology Property of the Alumina with Boehmite Slurry, ” in press.
    32. A. Putnis, Introduction to Mineral Sciences, Cambridge University Press, 1992.
    33. A. Putins and J. D. C. McConnell, Principles of Mineral Behaviour, Elsevier, New York, 1980.
    34. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, John Wiley & Sons, New York, 2nd ed. 1976.
    35. 楊榮澤,20-100 nm α-Al2O3晶粒的熱力學特性,國立成功大學資源工程研究所,碩士論文,中華民國 92年7月。
    36. 汪明儀,奈米級氧化鋁粉中θ→α-Al2O3相轉換之應力效應,國立成功大學資源工程研究所,碩士論文,中華民國 90年6月。
    37. 許宇嬋,微粒θ-與α-Al2O3混合粉末的熱反應,國立成功大學資源工程研究所,碩士論文,中華民國 90年7月。
    38. 張俊龍,奈米級氧化鋁粉末θ至α的相轉換活化能研究,國立成功大學資源工程研究所,碩士論文,中華民國 91年6月。

    下載圖示 校內:2005-08-03公開
    校外:2005-08-03公開
    QR CODE