簡易檢索 / 詳目顯示

研究生: 陳宗賢
Chen, Tsung-Hsien
論文名稱: 國際非金屬礦產品資源效率之比較研究-應用資料包絡分析法
International Comparative Study of Non-metallic Resources Efficiency : An Application of Data Envelopment Analysis
指導教授: 吳榮華
Wu, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 81
中文關鍵詞: 非金屬礦產品資源效率資料包絡分析資訊視覺化
外文關鍵詞: Non-metallic Mineral Resources, Data Envelopment Analysis, Resource Efficiency, Data Visualization Tool
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自工業革命後,科技進步及人口增長使得資源消耗快速成長,造成全球性生態破壞日益嚴重。非金屬礦產品資源,透過能量密集的加工過程,轉化為水泥、陶瓷、玻璃...等最終產品,不僅廣泛運用於非金屬礦物製品製造業,更是重要的戰略與救災資源。在資源有限的前提下,如何更有效率的運用非金屬礦產品資源就顯得至關重要。本研究以我國及歐盟15個國家為研究對象,使用資料包絡分析法(DEA)來評估各國家2006年至2014年之非金屬礦產品資源效率,探討我國非金屬礦產品資源效率的高低落點、無效率因素及長期變動趨勢。
    研究結果顯示,非金屬礦產品資源整體平均效率平均最高者為比利時(0.935),最低者為波蘭(0.291),我國平均效率為0.589排在第12名。芬蘭、波蘭、葡萄牙及英國,整體效率表現主要受到純技術無效率影響;愛沙尼亞、斯洛維尼亞及西班牙,整體效率表現主要則受到規模無效率影響;我國2014年純技術效率及規模效率分別為0.649及0.946,代表非金屬礦產品資源整體無效率主要受到非金屬礦產品及勞動投入配置不當影響。此外,藉由縱剖面視窗分析觀察我國與歐盟之效率變動趨勢,就長期而言,除了愛沙尼亞及波蘭之外,非金屬礦產品資源整體效率皆呈現上升的趨勢。
    最後,本研究利用資訊視覺化工具,探討歐盟地區非金屬礦產品資源效率之空間分布關聯特性,結果顯示比利時、丹麥及奧地利可視為效率之核心區域,整體效率表現以同心圓模式由近至遠向外遞減,與核心區域距離越近的國家效率越高,距離越遠則效率越低。

    The improvement of technology and the growth of human population are the main reasons for the large amount of resource comsumption and ecological crisis since Industrial Revolution.

    Non-metallic mineral resources such as limestone, silica, and clays, passes through an energy‑intensive process transformation to form cement, ceramics, glass and other final products. This is not only served in non-metallic mineral products manufacturing industry, but also act as an essential disaster relief resources. Under the premise of limited resources, how to use non-metallic mineral resources more efficiently is essential. Therefore, this study propose a data envelopment analysis model (DEA) based on non-metallic mineral resources input orientation to evaluate the efficiency of non-metallic mineral resources utilizati in taiwan and European union (EU) from 2006 to 2014. This research also investigates the reason of inefficiency factors and long-term trends.

    The results show that the highest, lowest mean overall efficiency is Belgium (0.935) and Poland (0.291). Taiwan's efficiency mean overall is 0.589, ranking at 12th. Finland, Poland, Portugal and the United Kingdom, the overall efficiency of the performance is mainly affected by the pure technology inefficiency. Estonia, Slovenia and Spain, the overall efficiency of the performance is mainly affected by the scale inefficiency. Taiwan's pure technical efficiency and scale efficiency is 0.649 and 0.946, which show that the inefficient performance that is mainly affected by improper allocation of non-metallic mineral products and labor inputs. Moreover, observing the trend of efficiency trends by window analysis, the overall efficiency of the long term are showing an upward trend, except for Estonia and Poland.

    Finally, this study explores the spatial distribution of non-metallic mineral resources in the EU by data visualization tool. The results show that Belgium, Denmark and Austria can be classified as the core area, the overall efficiency is decreasing from near to far. As a result, the closer to the core region, the efficiency will get higher and vice versa.

    目錄 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 3 第三節 研究流程與步驟 3 第四節 研究限制及範圍 4 第二章 台灣及歐盟非金屬礦產品現況 6 第一節 我國非金屬礦產品之資源現況 6 第二節 歐盟非金屬礦產品之資源現況 12 第三章 文獻回顧及研究方法 15 第一節 非金屬礦產品文獻回顧 15 第二節 資料包絡分析之文獻回顧 18 第三節 衡量效率之方法 21 第四節 資料包絡分析 25 第四章 實證分析 33 第一節 研究對象與項目分類 33 第二節 資料包絡分析模型建構 38 第三節 資料包絡分析之實證結果與分析 44 第五章 結論與建議 51 第一節 結論 51 第二節 後續研究建議 52 第三節 政策建議 53 參考文獻 55 附錄A-K 65

    中文文獻:
    1. 工研院礦業研究所(1982),「台灣礦產資源之供需與經濟之發展」。
    2. 何錦雲(2008),「高雄縣市地政事務所登記業務電腦化後之效率分析-以DEA與SFA方法之應用」,碩士論文,國立中山大學公共事務管理研究所在職專班
    3. 林淑貞(1999),「我國縣(市)選舉委員會生產力評估之研究-資料包絡分析法(DEA)觀點」,國立中興大學資源管理研究所碩士論文。
    4. 林彬、游明敏與楊啟宏(2006),「應用DEA/AR 模式評估港埠經營效率之研究-以基隆、台中及高雄三港為例」,運輸計畫季刊,第 35 卷第四卷,pp.391-414。
    5. 吳忠唐與吳泰熙(2013),「應用資料包絡分析法評估世界主要國家之能源效率、減碳效率、與環境經濟效率」,國立臺北大學企業管理學系所碩士論文。
    6. 吳濟華與何柏正(2008),「組織效率與生產力評估資料包絡分析法」,台北縣,前程文化事業。
    7. 高志宏與胡均立(2006),「APEC經濟體之總要素環境能源效率」,國立交通大學經營管理研究所博士論文。
    8. 財團法人中技社(2016),「2016台灣資源效率暨環境品質報告」。
    9. 經濟部國際貿易局(2014),「中華民國海關進口稅則輸出入貨品分類表合訂本」。
    10. 經濟部礦業司(1992),「中華民國礦產品利用、需求與流向調查(1/3)」。
    11. 經濟部礦業司(1993),「中華民國礦產品利用、需求與流向調查(2/3)」。
    12. 經濟部礦業司(1993),「中華民國礦產品利用、需求與流向調查(3/3)」。
    13. 經濟部礦業司(1997),「東南亞各國礦產資源現況及我國進口可行性研究」。
    14. 經濟部礦務局(2013),「台灣礦產資源政策前瞻研究計畫(1/3)」。
    15. 經濟部礦務局(2014),「台灣礦產資源政策前瞻研究計畫(2/3)」。
    16. 經濟部礦務局(2015),「台灣礦產資源政策前瞻研究計畫(3/3)」。
    17. 經濟部礦務局(2014),「礦業統計年報」。
    18. 蘇建州(2001),「鋼鐵業自願性節約能源之績效評估研究-DEA方法的應用」,碩士論文,國立台北大學資源管理研究所。
    19. 龔良智(1999),「DEA模型應用於台電配電技術部門績效評估之研究」,國立交通大學經營管理研究所碩士論文。

    英文文獻:
    1. Asmild, M., Paradi, J.C., Aggarwall, V. and Schaffnit, C. ,(2004), “Combining DEA window analysis with the Malmquist index approach in a study of the Canadian banking industry”, Journal of Productivity Analysis, Vol. 21 No. 1, Pages. 67-89.
    2. Banker, R. D., Charnes, A. and Cooper, W. W. ,(1984), “Some Models for Estimating technical and Scale Efficiencies in Data Envelopment Analysis.” Management Science, 30(9),Pages 1078-1092.
    3. British Geological Survey, (2016),“European Mineral Statistics”.
    4. British Geological Survey, (2010), “Mineral Information and Statistics for the BRIC countries”.
    5. British Geological Survey, (2008), “South American Mineral Production”.
    6. British Geological Survey, (2007), “African Mineral Production”.
    7. British Geological Survey, (2007), “China and South East Asia Mineral Production”.
    8. Chang,Y.T., Zhang,N.,Danao,D.,Zhang,N.,(2013),"Environmental efficiency analysis of transportation system in China:A non-radial DEA approach",Energy Policy,Volume 58,Pages 277–283.
    9. Charnes, A., Cooper, W. W., and Rhodes, E., (1978), Measuring the Efficiency of Decision Making Units, European Journal of Operations Research, 2,Pages 429-444.
    10. Charnes,A., Clark,C.T., Cooper,W.W., Golany,B.,(1985),“A developmental study of data envelopment analysis in measuring the efficiency of maintenance units in the U.S. Air Force”,Annals of Operations Research, Pages 95-112.
    11. Charnes, A., Cooper, W.W. and Seiford, L.M. ,(1994), “Extension to DEA models”, in Charnes, A., Cooper, W.W., Lewin, A.Y. and Seiford, L.M. (Eds), Data Envelopment Analysis: Theory, Methodology and Applications, Kluwer Academic Publishers, Norwell, MA.
    12. Chowdhury,H., Zelenyuk,V.,(2016),"Performance of hospital services in Ontario:DEA with truncated regression approach",Omega,Volome 63,Pages 111-122.
    13. Chen,L., Jia,G., (2017),Environmental efficiency analysis of China's regional industry: a data envelopment analysis (DEA) based approach ,Journal of Cleaner Production,Volume 142, Part 2, Pages 846–853.
    14. Cook, W.D., Tone, K., Zhu, J., (2014), “Data envelopment analysis: prior to choosing a model"Omega,Volume 44, Pages 1–4.
    15. Cook, W.D., Zhu, J., (2017),”Classifying inputs and outputs in data envelopment analysis”, European Journal of Operational Research, Volume 180, Pages 692–699.
    16. Cui,Y.J, Huang,G.L., Yin,Z.Y., (2015),"Estimating regional coal resource efficiency in China using three-stage DEA and bootstrap DEA models",International Journal of Mining Science and Technology,Volume 25, Issue 5, Pages 861–864.
    17. Denga,G., Lib,L.,Song,Y.N., (2016),"Provincial water use efficiency measurement and factor analysis in China: Based on SBM-DEA model", Ecological Indicators,Volume 69, Pages 12–18.
    18. Dyson, R.G., Shale,E.A., (2010),”Data envelopment analysis, operational research and uncertainty”, The Journal of the Operational Research Society, 61 (2010), Pages 25–34.
    19. Ederer,N.,(2015),"Evaluating capital and operating cost efficiency of offshore wind farms:A DEA approach",Renewable and Sustainable Energy Reviews,Volume 42, Pages 1034–1046.
    20. European Commission,(2010), “Europe 2020”.
    21. European Commission,(2014),“EU Resource Efficiency Scoreboard 2014” , Prepared by Demurtas, A., Sousanoglou, A., Morton, G., Humphris-Bach, A., Essig, C., Harding, L. and Cole, A., Belgium.
    22. European Commission,(2016), “material resource efficiency in Europe-Belgium”.
    23. European Commission,(2016), “material resource efficiency in Europe-Denmark”.
    24. European Commission,(2016), “material resource efficiency in Europe- Netherlands.”.
    25. Ellen Macarthur Foundation,(2013),“Toward the Circular Economy”.
    26. Fang,C.Y., Hu,J.L., Lou,T.K.,(2013),"Environment-adjustedtotal-factor energy efficiency of Taiwan's servicesectors",Energy Policy,Volome 63,Pages 1160-1168.
    27. Farrell, M. J. (1957), “The Measurement of Productive Efficiency.” Journal of the Royal Statistical Society, Vol. 120, No. 3, pp. 253-290.
    28. Golany, B., & Roll, Y. ,(1989), “ An application procedure for DEA”, Omega, 17(3), Pages 237-250.
    29. Guo,J., Rao,Q.L., Xu,Z.M.,(2008),"Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound", Journal of Hazardous Materials, Volume 153, Issues 1–2, Pages 728-734.
    30. Hailu,A., Veeman,T.S.,(2001),"Non-parametric productivity analysis with undesirable outputs: an application to the Canadian pulp and paper industry", American Journal of Agricultural Economics, Volume 83,Pages 605–616.
    31. Halkos,G.E, Tzeremes,N.G.,(2009), "Exploring the existence of Kuznets curve in countries' environmental efficiency using DEA window analysis" Ecological Economics,Volume 68 ,Pages 2168–2176.
    32. Honma,S., Hu,J.L.,(2014),” Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis”, Applied Energy, Volume 119 , Pages 67-78.
    33. Honma,S., Hu,J.L.,(2008), "Total-factor energy efficiency of regions in Japan", Energy Policy,Volume 36,Pages 821–833.
    34. Hu,J.L., Kao,C.H.,(2007), "Efficient energy-saving targets for APEC economies" ,Energy, Volume,35, Pages 373–382.
    35. Kaya,M.,(2016),"Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes",Waste Management, Volume 57, Pages 64-90
    36. Korhonen,P.J., Luptacik,M.,(2004),"Eco-efficiency analysis of power plants: An extension of data envelopment analysis",European Journal of Operational Research,Volume 154,Pages 437–446.
    37. Kuosmanen, T., Kortelainen, M., (2012), “Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints”, Journal of Productivity Analysis, 38, Pages 11–28.
    38. Lee,B.L., Worthington,A.C.,(2014),"Technical efficiency of mainstream airlines and low-cost carriers: New evidence using bootstrap data envelopment analysis truncated regression",Journal of Air Transport Management,Volome 38,Pages 15-20.
    39. Lilienfeld,A., Asmild,M., (2007),"Estimation of excess water use in irrigated agriculture:A Data Envelopment Analysis approach",Agricultural water management,volume 94,Pages 73-82.
    40. Long, X., Zhao, X., Cheng, F., (2015), “The comparison analysis of total factor productivity and eco-efficiency in China's cement manufactures”, Energy Policy, 81 , Pages 61–66.
    41. Marchetti,D., Wanke,P.,(2016),"Brazil's rail freight transport: Efficiency analysis using two-stage DEA and cluster-driven public policies",Socio-Economic Planning Sciences,Pages 1-17.
    42. Margarita,M.N., Waldo,S.P.,(2014),"Efficiency analysis of information technology and online social networks management: An integrated DEA-model assessment",Information & Management,Volume 51,Pages 712–725.
    43. Mukherjee,K.,(2008),"Energy use efficiency in US manufacturing: a nonparametric analysis", Energy Economics,Volume 30,Pages 76–96.
    44. Mukherjee,K.,(2010),"Measuring energy efficiency in the context of an emerging economy:the case of indian manufacturing",European Journal of Operational Research,Volume 201, Pages 933–941.
    45. OECD,(2008),” Resource Productivity in the G8 and the OECD”.
    46. OECD,(2012), “Sustainable Materials Management:Making better use of resources”.
    47. Oggioni,G.,Riccardi,R., Toninelli,R.,(2011),"Eco-efficiency of the world cement industry:A data envelopment analysis",Energy Policy,Volume 39,Pages 2842–2854
    48. Patterson,M,G., (1996),What is energy efficiency?: Concepts, indicators and methodological issues",Energy Policy, Volume 24, Issue 5, Pages 377-390.
    49. Wang,J., Zhao,T., (2016),"Regional energy-environmental performance and investment strategy for China's non-ferrous metals industry: a non-radial DEA based analysis",Journal of Cleaner Production,Pages 1-15.
    50. Wang,J., Zhao,T., Zhang,X.H., (2016)"Environmental assessment and investment strategies of provincial industrial sector in China — Analysis based on DEA model",Environmental Impact Assessment Review, Volume 60, Pages 156–168.
    51. Wang,K., Huang,W., Wu,J., Liu,Y.N., (2014),"Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA",Omega,Volume 44, Pages 5–20.
    52. Wang,R., Xu,Z.M., (2014),"Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes",Waste Management, Volume 34, Issue 8, Pages 1455-1469
    53. Wanke,P.F., Barros,C.P.,(2014),"Two-stage DEA: An application to major Brazilian banks",Expert Systems with Applications,Volome 41,Pages 2337-2344.
    54. Wanke,P.F., Barros,C.P.,(2015),"Public-private partnerships and scale efficiency in Brazilian ports:Evidence from two-stage DEA analysis",Socio-Economic Planning Sciences,Volume 51,Pages 13–22
    55. Wanke,P.F., Barros,C.P.,(2016)"Efficiency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression",Journal of Air Transport Management,Volume 54, Pages 93–103.
    56. Xu,J., Wei ,J.C., Zhao,D.T., (2016,)"Influence of social media on operational efficiency of national scenic spots in china based on three-stage DEA model",International Journal of Information Management,Volume 36, Issue 3, Pages 374–388.
    57. Xue, X., Wu, H., Zhang, X., Dai, J., Su,C., (2014),” Measuring energy consumption efficiency of the construction industry: the case of China”, Journal of cleaner production, 107, pp. 509–515.
    58. Yue, P. (1992), “Data envelopment analysis and commercial bank performance: a primer with applications to Missouri banks”, Federal Reserve Bank of St, Louis Review, Vol. 74 No. 1, pp. 31-45.
    59. Zhao,X.L., Yang,R., Ma,Q.,(2014),"China's total factor energy efficiency of provincial industrial sectors",Energy, Volume 65, 1 February 2014, Pages 52–61.
    60. Zhang,N., Xie,H.L.,(2015), "Toward green IT:Modeling sustainable production characteristics for Chinese electronic information industry, 1980–2012",Technological Forecasting & Social Change,Volume 96,Pages 62-70.
    61. Zheng,Y.H., Shen,Z.G. Cai,C.J., Ma,S.L., Xing,Y.S.,(2009),"The reuse of nonmetals recycled from waste printed circuit boards as reinforcing fillers in the polypropylene composites",Journal of Hazardous Materials, Volume 163, Issues 2–3, Pages 600-606.
    62. Zhu,Q.Y., Wu,J., Li,X.C. Xiong,B.B.,(2017),"China's regional natural resource allocation and utilization: a DEA-based approach in a big data environment",Journal of Cleaner Production, Volume 142, Part 2, Pages 809–818.

    網頁來源:
    1. 余炳盛(2012),「台灣地質知識服務網-礦床」,取自http://twgeoref.moeacgs.gov.tw/GipOpenWeb/wSite/mp。
    2. 財政部關務署統計資料庫,取自https://portal.sw.nat.gov.tw/APGA/GA01。
    3. 經濟部統計處工業業產銷存動態調查業別統計,取自http://dmz9.moea.gov.tw/gmweb/investigate/InvestigateDB.aspx。
    4. Eurostat (2013),“Compilation Guide 2013”, Retrieved from http://ec.europa.eu/eurostat/documents/1798247/6191533/2013-EW-MFA-Guide-10Sep2013.pdf/54087dfb-1fb0-40f2-b1e4-64ed22ae3f4c。
    5. Eurostat database, Retrieved from http://ec.europa.eu/eurostat/data/database。
    6. European Union External Action, (2016),” Taiwan and the EU”, Retrieved from https://eeas.europa.eu/headquarters/headquarters-homepage/12725/node/12725_zh-hant。
    7. International Monetary Fund, Retrieved from
    https://www.imf.org/external/pubs/ft/weo/weo0598/pdf/0598sta.pdf。
    8. World Input-Output Database, Retrieved from http://www.wiod.org/new_site/database/niots.htm。

    無法下載圖示 校內:2022-08-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE