簡易檢索 / 詳目顯示

研究生: 曾偉誌
Zeng, Wei-Zhi
論文名稱: 含彈性薄層之半平面異向性裂紋體之研究
Investigation of a Cracked Half-Plane Anisotropic Solid Bonded to a Thin Elastic Layer
指導教授: 宋見春
Sung, Jian-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 87
中文關鍵詞: 異向性材料正交異向性材料奇異積分方程式數值方法差排作用裂紋尖端應力強度因子
外文關鍵詞: Anisotropic material, Orthotropic material, Singularity integral equation, Numerical method, Dislocation action, Crack tip stress intensity factor
相關次數: 點閱:168下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討含彈性薄層之半平面異向性裂紋體之問題,應用異向性Stroh理論公式,藉由連續差排密度模擬裂紋行為,推演以差排密度為未知函數之奇異積分方程式,其後利用數值方法求解未知差排密度函數,進而推得彈性薄層下之應力強度因子(KI、KII),數值分析中針對裂紋面上受張應力和剪應力作用下探討了不同的幾何參數(如邊界條件、裂紋深度、材料角度、裂紋角度、彈性薄層厚度)對應力強度因子之影響,分析結果也應用了有限元素法進行比對。

    The aim of this study is to investigate the cracked half-plane anisotropic solid bonded to a thin elastic layer. Employing the Stroh formalism to deal with anisotropic elastic materials and the concept of modeling the crack by a continuous dislocation density, a singular integral equation for the problem with dislocation density as the unknown function is deduced. The unknown dislocation density is determined by numerical method and the corresponding stress intensity factors(KI、KII) are directly obtained. Numerical analyses are performed for cracks subjected to tensile stress or shear stress and the effects of geometrical conditions (such as boundary condition, crack depth, material angle, crack angle, elastic layer character) on the stress intensity factors are discussed. Some of the presented results are also compared with those by Finite Element Method.

    摘要……………………………………………………………………………I Abstract……………………………………………………………………….II 誌謝……………………………………………………………………….…III 目錄……………………………………………………………………….…IV 表目錄…………………………………………………………………..…VI 圖目錄…………………………………………………………………...…..IX 第一章 緒論……………………………………………………………….…1 1.1 前言…………………………………………………………..1 1.2 文獻回顧……………………………………………………..2 1.3 本文綱要……………………………………………………..3 第二章 基本公式……………………………………………………….……5 2.1 Stroh基本公式……………………………………………….5 2.2 全平面格林函數……………………………………………10 2.3 半平面格林函數………………………………………...….12 2.4 邊界含彈性薄層之半平面格林函數………………...…….13 第三章 問題推演………………………………………………………..….16 3.1 半平面異向性材料含任意角度裂紋之應力函數通式……17 3.2 半平面異向性裂紋體之問題………………………………20 3.3 含彈性薄層之半平面異向性裂紋體之問題………………22 3.4 差排密度與應力強度因子相關式…………………..……..24 第四章 數值方法……………………………………………………...……25 4.1 Gauss-Legendre Quadrature積分方法介紹……………..…25 4.2 標準型奇異積分方程式數值方法_Gerasoulis(1982)……..29 4.3 ABAQUS有限元素軟體說明…………………………...…35 第五章 數值結果與討論……………………………………………...……38 5.1 裂紋深度與長度比 對應力強度因子的影響……......39 5.2 材料角度 對應力強度因子的影響…………...……….…52 5.3 裂紋角度 對應力強度因子的影響………………...….…59 5.4 彈性薄層參數 對應力強度因子的影響………......….66 5.5 ABAQUS有限元素軟體驗證………………………….…..73 第六章 結論與建議…………………………………………………...……83 參考文獻……………………………………………………………….……85

    [1]Beghini, M., Bertini, L. and Fortanari, V., Stress Intensity Factors for an Inclined Edge Crack in a Semiplane. Engrg. Fracture Mechanics 62, 607-613,1999.
    [2]Chow, W.T. and Atluri, S.N., Stress Intensity Factors as the Fracture Parameters for Delamination Crack Growth in Composite Laminates. Computational Mechanics,1-10,1998.
    [3]Eshelby, J.D., Read, W.T. and Shockley, W., Anisotropic Elasticity with Applications to Dislocations Theory. Acta Metall 1,251-259,1953.
    [4]Erdogan, F., Stress Intensity Factors. ASME J. Appl. Mech 50, 992-1002, 1983.
    [5]Gerasoulis, A., The Use of Piecewise Quadratic Polynomials for the Solution of Singular Integral Equations of Cauchy Type. Comput. Math. With Applications. 8,15-22,1982.
    [6]Higadhida, Y. and Kamada, K., Stress Fields around a Crack Lying Parallel to a Free Surface. Int J. Fracture 19,39-52,1982.
    [7]Hasebe, N., and Qian, J., Fundamental Solutions for Half Plane with an Oblique Edge Crack. Engrg. Anal. With Boundary Elements 17, 263-267,1996.
    [8]Stroh, A.N., Dislocations and Cracks on Anisotropic Elasticity. Philos. Mag 7,625-646,1958.
    [9]Sung, J.C. and Liou, J.Y., An Internal Crack in a Half-Plane Solid with Clamped Boundary. Comput. Methods Appl. Engrg 121,361-372,1994.
    [10]Sung, J.C. and Liou, J.Y., Analysis of a Crack Embedded in a Linear Elastic Half-Plane Solid. ASME J. Appl. Mech 62,78-86,1995.
    [11]Ting, T.C.T., Explicit Solution and Invariance of the Singularities at an Interface Crack in Anisotropic Composites. Int J. Solids Structure 22,965-983,1986.
    [12]Ting, T.C.T., Image Singularities of Green’s Functions for Anisotropic Elastic Half-Spaces and Bimaterials. Q. J. Mech. Appl. Math 45,119-139,1992.
    [13]Ting, T.C.T. and Barnett, D.M., Image Force on Line Dislocations in Anisotropic Elastic Half-Spaces with a Fixed Boundary. Int J. Solids Struc 30,3,313-323,1993.
    [14]Ting, T.C.T., Anisotropic Elasticity : Theory and Applications. Oxford University Press, New York,1996.
    [15]Ting, T.C.T., Green’s Functions for a Half-Space and Two Half-Spaces Bonded to a Thin Anisotropic Elastic Layer. ASME J. Appl. Mech 75/051103-1,2008.
    [16]劉鈞耀,雙層異向性材料介面附近裂紋之分析,國立成功大學土木工程研究所博士論文,1994。
    [17]許智泰,具滑移邊界之半平面異向性材料內含裂紋之數值分析,國立成功大學土木工程研究所博士論文,2005。
    [18]徐仲毅,半平面壓電裂紋材料之數值分析,國立成功大學土木工程研究所博士論文,2006。

    [19]楊秉順,雙層介面完全結合之壓電裂紋解析,國立成功大學土木工程研究所博士論文,2008。
    [20]愛發股份有限公司,ABAQUS實務入門引導,全華科技圖書股份有限公司 印行,2005。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE