簡易檢索 / 詳目顯示

研究生: 陳冠宇
Chen, Kuan-Yu
論文名稱: 應用於高潔淨合金粉末製程之自由下落式霧化器設計及特性研究
Investigation of Free-fall Atomizer Design and Characteristic Research for High Purity Alloy Powder Production
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 88
中文關鍵詞: 氣霧法製程自由下落式霧化器金屬積層製造霧化特性
外文關鍵詞: Gas atomization, Free-fall atomizer, Metal additive manufacturing, Atomization characteristic
相關次數: 點閱:115下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來金屬積層製造的應用及技術逐漸成熟,而應用於生醫、半導體、航太產業之高潔淨粉末需求也隨之上升,但目前應用於高潔淨合金粉末製程之自由下落式噴嘴其相關研究資料甚少,且以傳統自由下落式霧化器所製造之金屬粉末平均粒徑坐落於100 μm左右,於SLM製程的使用率極低,限制其應用範圍。
    本研究之目的在於設計漸縮–漸擴型自由下落式霧化器,以改進傳統自由下落式霧化器的缺點,提高微細粉末得料率,以便運用於SLM製程,其中分為兩部分來探討其霧化特性。第一部分進行霧化器性能特性分析實驗,以水作為被霧化介質,探討於不同霧化氣體壓力、液柱直徑、霧化頂角及氣液質量比對於霧化特性的影響,並以高速攝影觀察霧化流場狀態。第二部分進行氣霧化金屬粉末製程參數實驗分析,並以錫銀銅合金Sn-3Ag-0.5Cu作為先期研究之霧化材料,探討霧化氣體壓力、液柱直徑、霧化頂角及熔湯超熔溫度,對金屬粉末粒徑影響,並進行金屬粉末形貌、金相及微硬度分析。
    研究結果顯示,霧化氣體壓力及霧化頂角,為霧化器性能特性分析實驗中控制噴霧粒徑之重要參數,例如:當霧化頂角固定為α3 (α/α0 = 1.5)之情況下,霧化氣體壓力由5 bar提升至20 bar時,液滴平均粒徑則由31.64 μm下降至4.40 μm。錫銀銅合金粉末製程結果顯示,於霧化頂角為α3 (α/α0 = 1.5)、液柱直徑d4 (d/d0 = 1.9)之情況下施以20 bar之霧化氣體壓力,其粉末平均粒徑為18.4 μm,且坐落於金屬積層製造需求之粒徑範圍10 ~ 63 μm之得料率高達82.17%。綜觀以上結果,此新型自由下落式霧化器優於傳統之製程結果,且滿足金屬積層製造之粉末需求。

    In recent years, the application and techniques of metal additive manufacturing has grown rapidly, which leads to the requirement of high purity alloy powder of medical, semiconductor and aerospace industry were significant increased. However, the researches of free-fall atomizer used in high purity alloy production were rare and the mean particle size produce by traditional free-fall atomizer is about 100 μm, which restrict the development of high purity alloy powder used in SLM process. The aim of this research is to design a novel free-fall atomizer which has converging-diverging flow channel, so as to improve the yield rate of fine powder used in SLM process. The characteristic research of the atomizer were first performed by atomizing water, and then a high speed camera is used to observe the spray patterns, which can understand atomization mechanism of free-fall atomizer. Second, Sn-3Ag-0.5Cu alloy was chosen as atomized media for powder production parameters analysis, which can investigate the powder size and surface morphology affected by change of nozzle geometry and operating parameters. The size distribution of water droplet and metal powder were measured by INSITEC RT-Sizer and Coulter LS230 particle sizer, respectively. The characteristics analysis result of water spray show that the droplets diameter decrease as both atomization pressure and apex angle were increased. For example, the droplet size reduced from 31.64 μm to 4.40 μm as atomization pressure increases from 5 bar to 20 bar with apex angle α3 (α/α0 = 1.5). In the metal powder experiments, at the condition of apex angle α3 (α/α0 = 1.5), melt stream diameter d4 (d/d0 = 1.9), and apply 20 bar of atomization pressure, the result show that mean particle size (D50) is equal to 18.4 μm, which yield rate located at the range of 10 ~ 63 μm was about 82.17%. It can be concluded that this novel free-fall atomizer has better performance than traditional one, and the powder produced by this process also can meet the requirements of SLM process.

    摘要 I 英文延伸摘要(Extended Abstract) II 致謝 VIII 目錄 IX 表目錄 XIII 圖目錄 XIV 符號表 XVIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.2.1 氣體霧化法製粉技術發展歷程 4 1.2.2 代表性氣體霧化法製粉技術 12 1.2.3 液體破碎過程相關研究 20 1.3 研究動機與目的 25 第二章 實驗設備及量測儀器 27 2.1 霧化器性能特性分析實驗系統 27 2.1.1 高壓氣體供應裝置 28 2.1.2液體進料裝置 28 2.1.3 液體霧化裝置 28 2.1.4 抽風排水裝置 29 2.2 霧化器性能特性分析量測儀器 30 2.2.1 INSITEC粒徑分析儀 30 2.2.2 熱質式質量流量計 32 2.2.3 數位壓力計 33 2.2.4 高速攝影機 34 2.3 氣霧化法金屬粉末製程系統 35 2.3.1 金屬熔湯加熱及溫度控制裝置 36 2.3.2 金屬熔湯霧化裝置 37 2.3.3 高壓氣體供應裝置 37 2.3.4 抽風集塵過濾裝置 37 2.4 金屬粉末特性量測儀器 38 2.4.1 粉末粒徑量測分析儀 38 2.4.2 掃描式電子顯微鏡(SEM) 40 2.4.3 金相顯微鏡 41 2.4.4 維克氏硬度試驗機 42 第三章 實驗步驟及方法 44 3.1 霧化器設計 44 3.2 霧化器性能特性分析實驗 45 3.2.1 霧化氣體壓力及流量量測 46 3.2.2 液體流量量測 46 3.2.3 液滴粒徑量測 46 3.3 氣霧化錫銀銅合金粉末製程實驗 47 3.3.1  熔煉過程之溫度控制及量測 48 3.3.2 錫銀銅合金熔湯霧化 49 3.3.3 金屬熔湯流量量測 49 3.3.4  錫銀銅合金粉末收集 49 3.4 錫銀銅合金粉末特性分析 50 3.4.1  錫銀銅合金粉末粒徑量測 50 3.4.2  錫銀銅合金粉末之形貌觀察及成分分析 50 3.4.3  錫銀銅合金粉末金相及顯微組織分析 51 3.4.4  錫銀銅合金粉末硬度量測 51 第四章 結果與討論 52 4.1 霧化器性能特性分析結果 52 4.1.1 霧化氣體壓力對霧化特性之影響 52 4.1.2 液柱直徑對霧化特性之影響 55 4.1.3 霧化頂角對霧化特性之影響 58 4.1.4 氣液質量比對霧化器特性之影響 59 4.1.5 高速攝影流場分析 60 4.2 氣霧化錫銀銅合金粉末製程結果 62 4.2.1 霧化氣體壓力對粉末粒徑之影響 62 4.2.2 液柱直徑對粉末粒徑之影響 63 4.2.3 霧化頂角對粉末粒徑及形貌之影響 65 4.2.4 熔湯超熔溫度對粉末粒徑之影響 66 4.3 錫銀銅合金粉末檢驗結果 68 4.3.1 粉末形貌觀察及成分分析結果 68 4.3.2 錫銀銅合金粉末金相及微硬度分析結果 75 4.3.3 錫銀銅合金粉末粒徑分佈圖 77 第五章 結論 81 參考文獻 83

    [1] Smartech, “Additive Manufacturing In the Metal Powders Industry: A 10-Year Market Forecast,” Smartech markets publishing, pp. 71, 2014.
    [2] E. Klar, W. M. Shafer, “Powder Metallurgy for High Performance Application,” Syracuse University Press, pp. 57-68, 1971.
    [3] J. S. Thompson, “A study of process variables in the production of aluminum powder,” J. Jnst. Met., Vol 74, 1948.
    [4] J. K.貝多,胡雲秀,曹勇家, “霧化法生產金屬粉末”,北京:冶金工業出版社,pp. 1-16,1985。
    [5] J. F. Joyce, “Defence metals information center review,” Section in powder metallurgy, Vol. 112, 1967
    [6] O. S. Nichiporenko, Y. I. Naida, “Heat exchange between metal particles and gas in the atomization process,” Soviet Powder Metallurgy Metal Ceramic, Vol. 67, Issue. 7, pp. 509, 1968.
    [7] N. J. Grant, R. Mehrabian, B. H. Kear , M. Cohen, “A review of various atomization processes,” Rapid solidification processing: Principles and Technologies II. Batcon Rouge, LA: Clator’s Pub., pp. 273, 1980.
    [8] R. Rutharde, “Novel aspects for high quality metal powders equipment,” Powder Metal Int., Vol. 13, Issue. 4, pp. 175, 1981.
    [9] A. Walz, A. Kurzarm, “Metal powders and a process for the production,” US Patent, No. 4534917, 1985-12-29.
    [10] I. E. Anderson, “Boost in atomizer pressure shaves powder-particle size,” Advanced Materials and Processes, Vol. 7, pp. 30, 1991.
    [11] S. A. Miller, “Close-coupled Gas Atomization of Metal Alloy,” In: W. A. Kaysser, J. W. Huppman, eds. Horizons of powder metallurgy. Freiberg, Germany: Verlag Schmidt GMBH, pp. 29-32, 1986.
    [12] A. Ünal, “Effect of processing variables on particle size in gas atomization of rapidly solidified aluminum powders,” Material Science and Technology vol. 3, pp.1029, 1987.
    [13] L. Estrade, R. Koos, “Properties of gas atomized metal powders,” In: W. A. Kaysser, J. W. Huppman, eds. Horizons of powder metallurgy. Freiberg, Germany: Verlag Schmidt GMBH, pp. 22, 1986.
    [14] M. F. Riley, S. K. Sherman, “Oxygen control during atomization using laminar barriers,” In: E. R. Andreotti, eds. Advances in powder metallurgy. Princeton, NJ: Metal Powder Industries Federation, pp. 25, 1990.
    [15] S. Ozbilen, A. Unal, “Influence of superheat On particle shape and size of gas atomized copper powders,” Powder Metal, Vol. 34, Issue. 1, pp. 53, 1991.
    [16] W. G. Hopkins, “Close-coupled gas atomization comes of age,” MPR, Vol. 45, Issue. 1, pp. 41-42, 1994.
    [17] G. Schulz, “Nanoval Process offers fine powder benefits,” Metal Powder Report, Vol. 11, Issue. 1, pp. 30-33, 1996.
    [18] J. T. Strauss, “Hotter gas increases atomization efficiency,” MPR, Vol. 4, Issue. 11, pp. 24-28, 1999.
    [19] A. Alagheband, C. Brown, “UMT promises tight control of particle size ,” MPR, Vol. 11, pp. 30-33, 1998.
    [20] G. Schulz, “Taking the pressure out of atomization,” Metal Powder Report, No. 23(3), pp. 23-25, 2002.
    [21] 陳剛,陳振華,嚴紅革,袁武華, “一種新型的氣體霧化制粉方法”,中國有色金屬學報,Vol. 11,Issue. 2,pp. 33-36,2001。
    [22] 呂洪,陳鼎,傅定發,龍小兵,陳剛, “一種新型的霧化方法”,中國粉體技術,Vol. 8,Issue. 4,pp. 6-8,2002。
    [23] 陳欣, “緊耦合器霧化流場結構和霧化機理研究”,中南大學碩士學位論文,2007。
    [24] I. E. Anderson, Figliola, S. Richard, “Atomizing nozzle and process ,” US Patent. No. 5125574, 1992-6-1.
    [25] Ayers, D. Jack, I. E. Anderson, “method for generating fine sprays of molten metal for spray coating and powder making,” US Patent, No. 4619845, 1986-10-28.
    [26] J. Ting, R. Terpst, I. E. Anderson, “A novel high pressure gas atomizing nozzle for liquid metal atomization,” Capus M, German R M. Advances in powder Metallurgy &Particulate Materials-1996. New Jersey: Metal Powder Industries Federation, pp. 97-108, 1996.
    [27] J. Ting, I. E. Anderson, L. Robert, “Atomizing nozzle and method,” US Patent, No. 6142382, 2000-11-7.
    [28] L. Gerking, “Powder from metal and ceramic melts by laminar gas streams at supersonic speeds,” Powder Metallurgy International, Vol. 25, Issue. 2, pp. 59-65, 1993.
    [29] M. Stobik, “Nanoval atomizing-superior flow design for fine powder,” K. Bauckhage, V. Uhlenwinkel, U. Fritsching. Proceedings of International Conference on SDMA. Bremen Germany: Metal Powder Industries Federation, pp. 511-520, 2002.
    [30] L. Gerking, “New achievements with the nanoval process for gas atomization,” M. Joseph, German, M. Randal, Proceedings of 2000 Powder Metallurgy World Congress. New Jersey: Metal Powder Industries Federation, pp. 457-459, 2000.
    [31] J. T. Straus, “Hotter gas increases atomization efficiency,” Metal Powder Report, Vol. 11, Issue. 3, pp.24-28, 1999.
    [32] J. T. Straus, S. A. Miller, “Effect of gas properties in powder yield produced by close-coupled gas atomization,” M. Capus, R. M. German, Advances in powder Metallurgy & Particulate Materials-1997. Princeton: Metal Powder Industries Federation, pp. 45-52, 1997.
    [33] J. T. Straus, “Close-coupled gas atomization using elevated temperature gas,” M. Capus, R. M. German, Advances in powder Metallurgy & Particulate Materials-1 999. New Jersey: Metal Powder Industries Federation, pp. 23-34, 1999.
    [34] S. A. Mille, “Close-coupled gas atomization of metal alloy,” M. Joseph, German, M. Randall , Proceedings of 1986 Powder Metallurgy World Congress. New Jersey: Metal Powder Industries Federation, pp. 29-32, 1986.
    [35] S. P. Mates, G. S. Settles, “High-speed imaging of liquid atomization by two different close-coupled nozzles,” M. Capus, R. M. German, Advances in powder Metallurgy & Particulate Materials-1997. Princeton: Metal Powder Industries Federation, pp. 5-10, 1997.
    [36] Hwan-Jin Sung, Tae Kwon Ha, Sangho Ahn, et a1., “Powder injection molding of a 17-4 PH stainless steel and the effect of sintering temperature on its microstructure and mechanical properties,” Journal of Materials Processing Technology, Vol. 130, Issue. 6, pp.321-327, 2002.
    [37] H. Liu, “Effect of atomizer geometry and configuration on gas flow filed in gas atomization,” M. Capus, R. M. German, Advances in powder Metallurgy & Particulate Materials-1997. Princeton: Metal Powder Industries Federation, pp. 5-10, 1997.
    [38] P. I. Espona, U. Piomieli, “Numerical simulation of the gas flow in gas-metal atomizer,” M. Joseph, German, M. Randall, Proceedings of 1998 Powder Metallurgy World Congress. New Jersey: Metal Powder Industries Federation, pp. 1-11, 1998.
    [39] J. Dunkely, “Water bench testing boots gas atomizing ,” Metal Powder Report, Vol. 1, Issue. 3, pp. 26-29, 1999.
    [40] S. Ozblie, A. Unal, “Sheppard T. Influence of liquid metal properties on particle size of inert gas atomized powders,” Powder Metallurgy, Vol. 35, Issue. 1, pp. 51-59, 1999.
    [41] J. T. Strauss, S. A. Miller, “Effect of melt superheat on powder characteristics produced by close-coupled gas atomization,” M. Capu, R. M. German, Advances in powder Metallurgy & Particulate Materials-1996. Princeton: Metal Powder Industries Federation, pp. 55-56, 1996.
    [42] I. S. R. Clark, J. K. Pargeter, UK Patent, No. 1529858, 1974.
    [43] D. Singh, S. Dangwal, “Effects of process parameters on surface morphology of metal powders produced by free fall gas atomization,” Journal of Materials Science, Vol. 41, Issue. 12 , pp 3853-3860, 2006.
    [44] H. Lohner, C. Czisch, U. Fritsching, “Impact of the gas nozzle arrangement on the flow field of a twin fluid atomizer with external mixing,” Int. Conf. on Liquid Atomization and Spray Systems, 2003.
    [45] R. A. Castleman Jr, “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol. 6, pp. 369-376, 1930.
    [46] A. H. Lefebvre, “Gas Turbine Combustion,” Hemisphere Publishing Corporation, New York, 1983.
    [47] N. Dombrowski, W. R. Johns, “The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol. 18, pp. 203-214, 1963.
    [48] B. E. Stapper, W. A. Sowa, G. S Samuelsen, “An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol. 114, pp. 39-45, 1992.
    [49] R. P. Fraser, “Liquid Fuel Atomization,” Sixth Symposium(International) on Combustion, Rein-hold, pp. 687-701, 1957.
    [50] H. C. Simmons, “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report, No. 7901/2-0, 1979.
    [51] Cubberly, and William, H. Metal Handbook. ninth ed., Vol. 7, Powder Metallurgy, American Society for Metal, 1984.
    [52] S. P. Mates, G. S. Settles, “High-speed imaging of Liquid atomization by two different close-coupled nozzles,” M. Capus, R. M. German, Advances in powder Metallurgy & Particulate Materials, Princeton:Metal Powder Industries Federation, pp. 5-10, 1997.

    無法下載圖示 校內:2021-06-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE