簡易檢索 / 詳目顯示

研究生: 王奕竣
Wang, Yi-Jun
論文名稱: 摻雜銪與鏑之硫化鈣磷光材料對白鶴芋葉片光合作用效率之影響研究
Study on the Effect of Europium and Dysprosium Co-Doped Calcium Sulfide Phosphors on Photosynthetic Efficiency in Spathiphyllum Leaves
指導教授: 蘇彥勳
Su, Yen-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 113
中文關鍵詞: 磷光粉硫化鈣固碳發光植物
外文關鍵詞: phosphor, calcium sulfide, carbon fixation, glowing plants
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球暖化與氣候變遷問題日益嚴峻,發展具潛力的碳中和技術成為當前環境科學領域的重要課題。本研究合成一種具儲能發光特性之長餘輝材料──摻雜銪與鏑之硫化鈣磷光粉(CaS:Eu,Dy),並將其應用於白鶴芋(Spathiphyllum)葉片表面,以探討其對植物光合作用與碳固定能力之影響。該磷光材料能吸收環境光源,將短波長光轉換為長波長紅光,進一步提供植物進行光合作用所需的有效光源,期望藉此增強植物碳匯潛力。
    經光致發光特性分析,CaS:Eu,Dy於 514 nm 激發波長下可發出波長 652 nm 之紅光。其中,摻雜比例為 0.5 mol% Eu、0.25 mol% Dy 之樣品具最佳餘輝效能,其螢光弛豫時間為 2.392 秒。為提升其環境穩定性,進一步採用二氧化矽(SiO₂)作為包覆層,以防止材料吸濕分解並延長其功能壽命。
    透過葉綠素螢光 OJIP 曲線分析顯示,磷光粉處理並未對植物生理造成負面影響,白鶴芋葉片可維持正常健康狀態,且整體光化學效能PI(abs)和PI(total)有明顯提升。此外,經 CaS:0.5%Eu,0.25%Dy 處理之葉片,其光合作用效率相較控制組提升約 42%,可使每平方米葉面每日額外固定約 0.045 mol 之二氧化碳。值得注意的是,在無光環境下,葉片仍能釋放紅光,不僅增強其固碳機能,亦提高室內植物之觀賞價值。

    With the escalating severity of global warming and climate change, the development of potential carbon-neutral technologies has become a critical focus in environmental science. In this study, a long-persistent phosphorescent material with energy-storing capabilities—calcium sulfide phosphor doped with europium and dysprosium, denoted as CaS:Eu,Dy—was synthesized and applied to the surface of Spathiphyllum leaves. This phosphor material can absorb ambient light and convert short-wavelength radiation into long-wavelength red light, thereby providing an additional light source to facilitate photosynthesis in plants and enhance their carbon sequestration potential.
    Photoluminescence (PL) analysis revealed that CaS:Eu,Dy emits red light at a wavelength of 652 nm when excited at 514 nm. Among the tested compositions, the sample doped with 0.5 mol% Eu and 0.25 mol% Dy exhibited the most favorable afterglow performance, with a fluorescence decay time of 2.392 seconds. To improve environmental stability, a silica (SiO₂) coating was applied to the particle surface to prevent moisture-induced degradation and extend the material’s functional lifetime.
    Analysis of chlorophyll fluorescence using the OJIP transient curve indicated that the application of the phosphor did not adversely affect the physiological condition of the plants, with treated Spathiphyllum leaves remaining healthy. Furthermore, key photochemical performance indices, PI(abs) and PI(total), were significantly enhanced. Leaves treated with CaS:0.5%Eu,0.25%Dy demonstrated approximately 42% higher photosynthetic efficiency compared to the untreated control group, enabling an additional daily carbon fixation of approximately 0.045 mol CO₂ per square meter of leaf area. Notably, the leaves were also capable of emitting red light in the absence of illumination, thereby not only enhancing carbon fixation potential but also improving the ornamental value of indoor plants

    摘要 I 英文延伸摘要(English Extended Abstract) II SUMMARY II INTRODUCTION III MATERIALS AND METHODS IV RESULT AND DISCUSSION V CONCLUSION XI 誌謝 XII 目錄 XIII 圖目錄 XVI 表目錄 XIX 第一章 緒論 1 1.1 前言 1 1.2 研究背景 3 1.3 研究動機與目的 5 第二章 文獻回顧 6 2.1 碳中和目標與全球發展趨勢 6 2.2 碳捕捉與固碳技術發展 8 2.3 植物固碳潛力與光合作用機制 10 2.4 光致發光 13 2.5 長餘輝磷光材料 15 2.5.1 結構 15 2.5.2 機制 18 2.5.3 應用 21 2.6 表面改質技術-二氧化矽包覆 23 2.7 葉綠素瞬態螢光 25 第三章 研究方法 32 3.1 實驗藥品列表 32 3.2 實驗儀器列表 33 3.3 材料合成 34 3.3.1 合成CaS:Eu,Dy 34 3.3.2 合成CaS:Eu,Dy@ SiO2 35 3.4 材料物性分析 36 3.4.1 X光繞射分析儀(XRD) 36 3.4.2 感應耦合電漿質譜分析儀(ICP-MS) 37 3.4.3 X射線光電子能譜儀(XPS) 38 3.4.4 螢光光譜儀 39 3.4.5 時域螢光光譜分析(TRES) 40 3.4.6 掃描式電子顯微鏡(SEM) 41 3.4.7 穿透式電子顯微鏡(TEM) 42 3.4.8 界達電位分析儀(Zeta Potential) 43 3.5 實驗用植株與磷光塗層之處理方法設計 44 3.5.1 植物材料來源與培育方法 44 3.5.2 磷光塗料製備方法 45 3.5.3 磷光塗層施作方法與處理流程 46 3.5.4 實驗處理組與控制組設計邏輯 47 3.6 塗佈處理對白鶴芋光合效能與葉面特徵之分析 48 3.6.1 螢光顯微鏡觀察 48 3.6.2 葉綠素相對含量測定 49 3.6.3 葉綠素瞬態螢光分析 50 3.6.4 光合作用速率分析 51 第四章 結果與討論 52 4.1 材料結構與組成分析 52 4.1.1 X光繞射分析儀(XRD) 52 4.1.2 感應耦合電漿質譜儀(ICP-MS) 54 4.1.3 X射線光電子能譜儀(XPS) 55 4.2 光學性質分析 57 4.2.1 螢光光譜儀 57 4.2.2 時域螢光光譜分析(TRES) 59 4.3 微觀形貌與表面修飾分析 61 4.3.1 掃描式電子顯微鏡(SEM) 61 4.3.2 穿透式電子顯微鏡(TEM) 63 4.3.3 Zeta電位分析 66 4.4 葉面塗佈磷光粉之應用分析 67 4.4.1 長餘輝發光行為觀察 67 4.4.2 螢光顯微鏡觀察 69 4.4.3 葉綠素相對含量分析 71 4.4.4 葉綠素瞬態螢光分析 72 4.4.5 光合作用速率與碳固定分析 82 第五章 結論 84 第六章 參考文獻 85

    [1] L. Chen et al., "Strategies to achieve a carbon neutral society: a review," Environmental Chemistry Letters, vol. 20, no. 4, pp. 2277-2310, 2022, doi: 10.1007/s10311-022-01435-8.
    [2] Intergovernmental Panel on Climate Change, "Global Warming of 1.5°C," in "An IPCC Special Report," 2018. [Online]. Available: https://www.ipcc.ch/sr15/
    [3] O. Emmanuel, Rozina, and T. C. Ezeji, "Advances in carbon dioxide capture and conversion technologies: Industrial integration for sustainable chemical production," Next Sustainability, vol. 6, p. 100108, 2025, doi: 10.1016/j.nxsust.2025.100108.
    [4] S. Fleming, "This chart shows the energy milestones we need to reach to achieve net zero emissions by 2050," World Economic Forum, Jun 17, 2021. [Online]. Available: https://www.weforum.org/stories/2021/06/net-zero-emissions-2050-milestones/
    [5] J. El-Zohbi and D. Rechid, "Removing carbon dioxide from the atmosphere," Open Access Government, Jan. 9, 2024. [Online]. Available: https://www.openaccessgovernment.org/article/removing-carbon-dioxide-from-the-atmosphere/172012/
    [6] M. R. Allen et al., "Net Zero: Science, Origins, and Implications," Annual Review of Environment and Resources, vol. 47, no. 1, pp. 849-887, 2022, doi: 10.1146/annurev-environ-112320-105050.
    [7] M. Fasihi, O. Efimova, and C. Breyer, "Techno-economic assessment of CO2 direct air capture plants," Journal of Cleaner Production, vol. 224, pp. 957-980, 2019, doi: 10.1016/j.jclepro.2019.03.086.
    [8] N. Nayak, R. Mehrotra, and S. Mehrotra, "Carbon biosequestration strategies: a review," Carbon Capture Science & Technology, vol. 4, p. 100065, 2022, doi: 10.1016/j.ccst.2022.100065.
    [9] X. Wang et al., "One-Step Design of a Water-Resistant Green-to-Red Phosphor for Horticultural Sunlight Conversion," ACS Agricultural Science & Technology, vol. 1, no. 2, pp. 55-63, 2021, doi: 10.1021/acsagscitech.0c00062.
    [10] Y. Wang et al., "Highly Efficient and Stable Near‐Infrared Broadband Garnet Phosphor for Multifunctional Phosphor‐Converted Light‐Emitting Diodes," Advanced Optical Materials, vol. 10, no. 11, p. 2200415, 2022, doi: 10.1002/adom.202200415.
    [11] W. Wu et al., "Characterization and properties of a Sr2Si5N8:Eu2+-based light-conversion agricultural film," Journal of Rare Earths, vol. 38, no. 5, pp. 539-545, 2020, doi: 10.1016/j.jre.2020.01.020.
    [12] P. F. Smet, I. Moreels, Z. Hens, and D. Poelman, "Luminescence in Sulfides: A Rich History and a Bright Future," Materials, vol. 3, no. 4, pp. 2834-2883, 2010, doi: 10.3390/ma3042834.
    [13] G. Sharma, S. W. Gosavi, S. P. Lochab, and N. Singh, "Studies on luminescence properties and energy transfer in Ce/Dy co-doped CaS nano-phosphors," Journal of Luminescence, vol. 132, no. 10, pp. 2619-2625, 2012, doi: 10.1016/j.jlumin.2012.04.052.
    [14] D. C. Rodríguez Burbano, S. K. Sharma, P. Dorenbos, B. Viana, and J. A. Capobianco, "Persistent and Photostimulated Red Emission in CaS:Eu2+,Dy3+ Nanophosphors," Advanced Optical Materials, vol. 3, no. 4, pp. 551-557, 2015, doi: 10.1002/adom.201400562.
    [15] B. C. Wolverton, A. Johnson, and K. Bounds, "Interior landscape plants for indoor air pollution abatement," NASA, NASA-TM-101766, 1989. [Online]. Available: https://ntrs.nasa.gov/citations/19930073077
    [16] European Commission. (2019). Communication on The European Green Deal. [Online] Available: https://ec.europa.eu/info/publications/communication-european-green-deal_en
    [17] Institute of Climate Change and Sustainable Development of Tsinghua University, China’s long-term low-carbon development strategies and pathways, 1st ed. Singapore: Springer, 2021. [Online]. Available: https://www.efchina.org/Attachments/Report/report-lceg-20210711/China-s-Long-Term-Low-Carbon-Development-Strategies-and-Pathways.pdf.
    [18] Ministry of Economy, Trade and Industry (METI) of Japan. (2020). Green Growth Strategy Through Achieving Carbon Neutrality in 2050. [Online] Available: https://www.meti.go.jp/english/policy/energy_environment/global_warming/ggs2050/index.html
    [19] The Government of the Republic of Korea. (2020). 2050 Carbon Neutral Strategy of the Republic of Korea towards a Sustainable and Green Society. [Online] Available: https://unfccc.int/sites/default/files/resource/LTS1_RKorea.pdf
    [20] Government of Canada. (2021). Canadian Net-Zero Emissions Accountability Act. [Online] Available: https://laws-lois.justice.gc.ca/eng/acts/c-19.3/fulltext.html
    [21] 中華民國行政院, "臺灣2050淨零排放," Mar. 14, 2023. [Online]. Available: https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/7a65a06e-3f71-4c68-b368-85549fbca5d1
    [22] 中華民國國家發展委員會. "臺灣2050淨零路徑." https://www.ndc.gov.tw/Content_List.aspx?n=FD76ECBAE77D9811#mobile_menu (accessed.
    [23] P.-H. Chen, C.-H. Lee, J.-Y. Wu, and W.-S. Chen, "Perspectives on Taiwan’s Pathway to Net-Zero Emissions," Sustainability, vol. 15, no. 6, p. 5587, 2023, doi: 10.3390/su15065587.
    [24] 孫文臨, "世界環境日 台積電、中鋼、亞泥等13企業聯手倡議2050淨零碳排," 環境資訊中心, Jun. 7, 2021. [Online]. Available: https://e-info.org.tw/node/231365
    [25] International Energy Agency, "Net Zero by 2050: A Roadmap for the Global Energy Sector," May 2021. [Online]. Available: https://www.iea.org/reports/net-zero-by-2050
    [26] C. Hepburn et al., "The technological and economic prospects for CO2 utilization and removal," Nature, vol. 575, no. 7781, pp. 87-97, 2019, doi: 10.1038/s41586-019-1681-6.
    [27] A. Banerjee and C. G. Morales-Guio, "Integrated CO2 capture and electrochemical conversion: coupled effects of transport, kinetics and thermodynamics in the direct reduction of captured-CO2 adducts," EES Catalysis, vol. 3, no. 2, pp. 205-234, 2025, doi: 10.1039/d4ey00285g.
    [28] M. S. A. Joarder et al., "A comprehensive review of carbon dioxide capture, transportation, utilization, and storage: a source of future energy," Environmental Science and Pollution Research, vol. 32, no. 15, pp. 9299-9332, 2025, doi: 10.1007/s11356-025-36284-9.
    [29] International Energy Agency, "CCUS projects around the world are reaching new milestones," Apr. 30, 2025. [Online]. Available: https://www.iea.org/commentaries/ccus-projects-around-the-world-are-reaching-new-milestones
    [30] M. R. Allen et al., "Geological Net Zero and the need for disaggregated accounting for carbon sinks," Nature, vol. 638, no. 8050, pp. 343-350, 2025, doi: 10.1038/s41586-024-08326-8.
    [31] Y. Pan et al., "The enduring world forest carbon sink," Nature, vol. 631, no. 8021, pp. 563-569, 2024, doi: 10.1038/s41586-024-07602-x.
    [32] S. C. Bhatla and M. A. Lal, Plant Physiology, Development and Metabolism, 1st ed. Singapore: Springer, 2018. [Online]. Available: https://dx.doi.org/10.1007/978-981-13-2023-1.
    [33] L. Z. Taiz, E. , Plant physiology, 3rd ed. Sunderland, MA: Sinauer Associates, 2003. [Online]. Available: https://fmipa.umri.ac.id/wp-content/uploads/2016/03/Lincoln_Taiz_Eduardo_Zeiger_Plant_PhysiologyBookFi.org_.pdf.
    [34] Principles of Fluorescence Spectroscopy, J. R. Lakowicz, ed., 3rd ed. New York, US: Springer 2006. [Online]. Available: https://dx.doi.org/10.1007/978-0-387-46312-4.
    [35] B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications, 2nd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. [Online]. Available: https://dx.doi.org/10.1002/9783527650002.
    [36] D. P. Singh, S. R. Inamdar, and S. Kumar, "Fluorescence Spectrometry," in Modern Techniques of Spectroscopy, vol. 13, D. K. Singh, M. Pradhan, and A. Materny Eds. Singapore: Springer, 2021, pp. 431-468.
    [37] P. Pust, P. J. Schmidt, and W. Schnick, "A revolution in lighting," Nature Materials, vol. 14, no. 5, pp. 454-458, 2015, doi: 10.1038/nmat4270.
    [38] U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, "Quantum dots versus organic dyes as fluorescent labels," Nature Methods, vol. 5, no. 9, pp. 763-775, 2008, doi: 10.1038/nmeth.1248.
    [39] G. Blasse and B. C. Grabmaier, Luminescent Materials, 1st ed. Berlin, Heidelberg: Springer 1994. [Online]. Available: https://dx.doi.org/10.1007/978-3-642-79017-1.
    [40] Y. Li, M. Gecevicius, and J. Qiu, "Long persistent phosphors—from fundamentals to applications," Chemical Society Reviews, vol. 45, no. 8, pp. 2090-2136, 2016, doi: 10.1039/c5cs00582e.
    [41] K. Huang et al., "Designing Next Generation of Persistent Luminescence: Recent Advances in Uniform Persistent Luminescence Nanoparticles," Advanced Materials, vol. 34, no. 14, p. 2107962, 2022, doi: 10.1002/adma.202107962.
    [42] L. Yang, S. Gai, H. Ding, D. Yang, L. Feng, and P. Yang, "Recent Progress in Inorganic Afterglow Materials: Mechanisms, Persistent Luminescent Properties, Modulating Methods, and Bioimaging Applications," Advanced Optical Materials, vol. 11, no. 11, p. 2202382, 2023, doi: 10.1002/adom.202202382.
    [43] J. Xu and S. Tanabe, "Persistent luminescence instead of phosphorescence: History, mechanism, and perspective," Journal of Luminescence, vol. 205, pp. 581-620, 2019, doi: 10.1016/j.jlumin.2018.09.047.
    [44] L. Yuan, Y. Jin, Y. Su, H. Wu, Y. Hu, and S. Yang, "Optically Stimulated Luminescence Phosphors: Principles, Applications, and Prospects," Laser & Photonics Reviews, vol. 14, no. 12, p. 2000123, 2020, doi: 10.1002/lpor.202000123.
    [45] D. Bidwai, N. Kumar Sahu, S. J. Dhoble, A. Mahajan, D. Haranath, and G. Swati, "Review on long afterglow nanophosphors, their mechanism and its application in round-the-clock working photocatalysis," Methods and Applications in Fluorescence, vol. 10, no. 3, p. 032001, 2022, doi: 10.1088/2050-6120/ac6b87.
    [46] H. Yu et al., "Color-tunable visible photoluminescence of Eu:CaF2 single crystals: variations of valence state and local lattice environment of Eu ions," Optics Express, vol. 27, no. 2, p. 523, 2019, doi: 10.1364/oe.27.000523.
    [47] I. Gupta, S. Singh, S. Bhagwan, and D. Singh, "Rare earth (RE) doped phosphors and their emerging applications: A review," Ceramics International, vol. 47, no. 14, pp. 19282-19303, 2021, doi: 10.1016/j.ceramint.2021.03.308.
    [48] M. Gu, X. Li, and Y. Cao, "Optical storage arrays: a perspective for future big data storage," Light: Science & Applications, vol. 3, no. 5, pp. e177-e177, 2014, doi: 10.1038/lsa.2014.58.
    [49] F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, "Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8," Scientific Reports, vol. 3, no. 1, p. 1554, 2013, doi: 10.1038/srep01554.
    [50] T. Maldiney et al., "Controlling Electron Trap Depth To Enhance Optical Properties of Persistent Luminescence Nanoparticles for In Vivo Imaging," Journal of the American Chemical Society, vol. 133, no. 30, pp. 11810-11815, 2011, doi: 10.1021/ja204504w.
    [51] G. Hong, S. Diao, A. L. Antaris, and H. Dai, "Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy," Chemical Reviews, vol. 115, no. 19, pp. 10816-10906, 2015, doi: 10.1021/acs.chemrev.5b00008.
    [52] Y. Li et al., "Folic acid-conjugated chromium(III) doped nanoparticles consisting of mixed oxides of zinc, gallium and tin, and possessing near-infrared and long persistent phosphorescence for targeted imaging of cancer cells," Microchimica Acta, vol. 182, no. 9-10, pp. 1827-1834, 2015, doi: 10.1007/s00604-015-1486-8.
    [53] C. Yang et al., "Long-lasting photocatalytic activity of trace phosphorus-doped g-C3N4/SMSO and its application in antibacterial ceramics," Ecotoxicology and Environmental Safety, vol. 242, p. 113951, 2022, doi: 10.1016/j.ecoenv.2022.113951.
    [54] H. Li, S. Yin, Y. Wang, and T. Sato, "Efficient persistent photocatalytic decomposition of nitrogen monoxide over a fluorescence-assisted CaAl2O4:(Eu, Nd)/(Ta, N)-codoped TiO2/Fe2O3," Applied Catalysis B: Environmental, vol. 132-133, pp. 487-492, 2013, doi: 10.1016/j.apcatb.2012.12.026.
    [55] H. Li and Y. Wang, "Photocatalysis enhancement of CaAl2O4:Eu2+, Nd3+@TiO2 composite powders," Research on Chemical Intermediates, vol. 36, no. 1, pp. 51-59, 2010, doi: 10.1007/s11164-010-0113-x.
    [56] G. Ren, H. Su, and S. Wang, "The combined method to synthesis silica nanoparticle by Stöber process," Journal of Sol-Gel Science and Technology, vol. 96, no. 1, pp. 108-120, 2020, doi: 10.1007/s10971-020-05322-y.
    [57] J. P. Yan, Z. L. Tang, S. H. Luo, and Z. T. Zhang, "Surface modification of long afterglow Sr4Al14O25:Dy,Eu phosphor by silica coating," in High-performance Ceramics III: CICC-3, W. Pan, J. H. Gong, C. C. Ge, and J. F. Li, Eds., Switzerland: Trans Tech Publications, in Key Engineering Materials , vol. 280-283, 2005, pp. 509-512, doi: 10.4028/www.scientific.net/KEM.280-283.509.
    [58] Y. Han et al., "Unraveling the Growth Mechanism of Silica Particles in the Stöber Method: In Situ Seeded Growth Model," Langmuir, vol. 33, no. 23, pp. 5879-5890, 2017, doi: 10.1021/acs.langmuir.7b01140.
    [59] C. Guo, B. Chu, M. Wu, and Q. Su, "Oxide coating for alkaline earth sulfide based phosphor," Journal of Luminescence, vol. 105, no. 2-4, pp. 121-126, 2003, doi: 10.1016/s0022-2313(03)00117-0.
    [60] J.-N. Liu, W.-B. Bu, and J.-L. Shi, "Silica Coated Upconversion Nanoparticles: A Versatile Platform for the Development of Efficient Theranostics," Accounts of Chemical Research, vol. 48, no. 7, pp. 1797-1805, 2015, doi: 10.1021/acs.accounts.5b00078.
    [61] S. M. Rafiaei, F. Ashrafi, A. Sayyadi-Shahraki, and E. Karimzadeh, "Enhanced luminescence properties of phosphors coated by silica nano-layers: Study of reflection and emission," Ceramics International, vol. 45, no. 2, pp. 1670-1675, 2019, doi: 10.1016/j.ceramint.2018.10.044.
    [62] C. I. C. Crucho, "Silica coatings: From nanostructures to biological entities," Applied Materials Today, vol. 38, p. 102179, 2024, doi: 10.1016/j.apmt.2024.102179.
    [63] S. Liu and M. Y. Han, "Silica‐Coated Metal Nanoparticles," Chemistry – An Asian Journal, vol. 5, no. 1, pp. 36-45, 2010, doi: 10.1002/asia.200900228.
    [64] A. A. Nayl, A. I. Abd-Elhamid, A. A. Aly, and S. Bräse, "Recent progress in the applications of silica-based nanoparticles," RSC Advances, vol. 12, no. 22, pp. 13706-13726, 2022, doi: 10.1039/d2ra01587k.
    [65] E. H. Murchie and T. Lawson, "Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications," Journal of Experimental Botany, vol. 64, no. 13, pp. 3983-3998, 2013, doi: 10.1093/jxb/ert208.
    [66] M. Tsimilli-Michael, "Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology," (in English), Photosynthetica, Review vol. 58, no. 2, pp. 275-292, 2020, doi: 10.32615/ps.2019.150.
    [67] A. Stirbet and Govindjee, "On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient," Journal of Photochemistry and Photobiology B: Biology, vol. 104, no. 1-2, pp. 236-257, 2011, doi: 10.1016/j.jphotobiol.2010.12.010.
    [68] I. López Valiño, G. Dieguez Gaviola, V. E. Diz, G. A. González, M. G. Lagorio, and G. B. Cordon, "Tracking acetylcholinesterase inhibitor pesticides in the environment using the rapid transient of chlorophyll fluorescence," Photochemistry and Photobiology, 2025, doi: 10.1111/php.14080.
    [69] R. J. Strasser, M. Tsimilli-Michael, and A. Srivastava, "Analysis of the Chlorophyll a Fluorescence Transient," in Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration, vol. 19, G. C. Papageorgiou and Govindjee Eds. Dordrecht, Netherlands: Springer, 2004, pp. 321-362.
    [70] M. Tsimilli-Michael and R. J. Strasser, "The energy flux theory 35 years later: formulations and applications," Photosynthesis Research, vol. 117, no. 1-3, pp. 289-320, 2013, doi: 10.1007/s11120-013-9895-1.
    [71] F. Bussotti, R. Desotgiu, M. Pollastrini, and C. Cascio, "The JIP test: a tool to screen the capacity of plant adaptation to climate change," Scandinavian Journal of Forest Research, vol. 25, no. sup8, pp. 43-50, 2010, doi: 10.1080/02827581.2010.485777.
    [72] J. M. Banks, "Continuous excitation chlorophyll fluorescence parameters: a review for practitioners," Tree Physiology, vol. 37, no. 8, pp. 1128-1136, 2017, doi: 10.1093/treephys/tpx059.
    [73] J.-K. Kim and D. F. Lawler, "Characteristics of Zeta Potential Distribution in Silica Particles," Bulletin of the Korean Chemical Society, vol. 26, no. 7, pp. 1083-1089, 2005, doi: 10.5012/bkcs.2005.26.7.1083.

    無法下載圖示 校內:2030-08-08公開
    校外:2030-08-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE