簡易檢索 / 詳目顯示

研究生: 徐羽彤
Hsu, Yu-Tung
論文名稱: 電雙層電容器之黏著劑與膠固態電解質之研究
Studies on Binders and Gel Electrolytes for Electric Double Layer Capacitors
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 128
中文關鍵詞: 電雙層電容器高分子黏著劑聚丙烯腈共聚物膠固態電解質
外文關鍵詞: electric double layer capacitors, polymer binder, gel polymer electrolyte
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩部分進行,第一部分以不同的黏著劑搭配活性碳材塗佈於鋁集電器上,分別為聚丙烯腈共聚高分子PN-MA搭配有機溶劑DMAc、以及水系黏著劑CMC/SBR搭配DI water作為溶劑,並透過最適化的測試,使黏著劑與電解質及碳電極表面有較佳的搭配性。而後以鋁塑複合軟包的形式組裝成1F超級電容器,經過20,000圈的長效循環後可以保持80%的電容維持率。
    本研究第二部分以開發膠固態電解質為首要目標,在膠固態電解質中,透過高分子間的作用力,藉以形成主鏈架構,進而成為離子有效的傳輸通道。本研究採用聚丙烯腈共聚高分子PN-MA以及PEG作為主鏈架構,
    因為此二種高分子屬非結晶高分子,能有效降低離子移動阻力。而PN-MA的酯類側鏈因具有較強的極性,對於活性碳材表面的親水含氧官能基能夠形成強作用力,形成離子通道,促進離子的傳遞能力。最後以GPE-ANEG作為膠固態電解質,搭配以水系黏著劑製備而成的活性碳電極,組裝成對稱性二極式電容器,工作電位在0-2.7 V,其最大的比能量為40 Wh kg-1、比功率高達85 kW kg-1,且在低放電速率(0.5 A g-1)時,電容值較LE高,可達138 F g-1,;在高放電速率 (100 A g-1) 下的電容維持率可達84%。本研究證實了黏著劑對於電容維持率的增加、以及膠固態電解質對於電容器整體效能有明顯的提升。

    This research is divided into two parts. The first part is coated on the aluminum current collector with different binders and activated carbon materials, namely, polyacrylonitrile copolymer PN-MA with organic solvent DMAc, and water-based binder CMC/SBR with DI water as the solvent, and through the most suitable test, the binder has a better compatibility with the electrolyte and the surface of the carbon electrode. Then it is assembled into a 1F supercapacitor in the form of an pouch cell. After a long-term cycle of 20,000 cycles, it can maintain 80% retention of initial capacitance.
    The second part of this research takes the development of a gel polymer electrolyte as the primary goal. In the gel polymer electrolyte, through the interaction between polymers, a backbone structure is formed, which then becomes an effective ion transport channel. This study take PN-MA and PEG polymer as the framework, due to these two kinds of polymers are non-crystalline polymers, they can effectively reduce ion movement resistance. The ester side chain of PN-MA has strong polarity, leading to a strong force on the hydrophilic oxygen-containing functional groups on the surface of the activated carbon material to form ion channels and promote ion transportation. Finally, GPE-ANEG is used as a gel polymer electrolyte, combined with an activated carbon electrode prepared with a water-based binder, to assemble a symmetrical two-electrode capacitor with an operating voltage window of 0-2.7 V, it can reach a maximum specific energy density of 40 Wh kg-1 and a specific power density is as high as 85 kW kg-1. This study confirmed that the binder increases the capacitance retention rate and the gel polymer electrolyte significantly improves the overall performance of the supercapacitor.

    中文摘要 I 英文延伸摘要 II 致謝 XV 總目錄 XVI 表目錄 XXI 圖目錄 XXIII 第一章 緒論 1 1-1前言 1 1-2 超級電容器的發展及應用 2 1-3 超級電容器之儲能機制 5 1-4 超級電容器之構成元件 7 1-4-1 電極材料 7 1-4-2 電解質 9 1-4-3 集電器 11 1-4-4 介電物質 11 1-4-5 黏著劑 12 1-5 研究動機 13 第二章 文獻回顧與理論說明 14 2-1 電雙層結構與原理 14 2-1-1 電雙層原理 14 2-1-2 Helmholtz電雙層模型 15 2-1-3 Stern電雙層模型 16 2-1-4 電雙層結構 17 2-2 電雙層電容器 (EDLC) 18 2-2-1 電容器介紹 18 2-2-2 平行板電容器 18 2-2-3 二極式及三極式電容器 20 2-3 碳材應用於超級電容器的發展 21 2-3-1 活性碳碳材 (Activated carbon, AC) 21 2-3-2 模板製備多孔碳材 (Templated porous carbon) 22 2-3-3 碳化物衍生碳 (Carbide-derived carbons, CDC) 23 2-3-4 石墨烯材料 23 2-3-5 介相瀝青碳材 24 2-4 活化介相瀝青碳材原理 24 2-5 碳材物理性質之分析 27 2-5-1 等溫吸附曲線 27 2-5-2 BET等溫吸附模式 31 2-5-3 BJH理論 32 2-5-4 密度泛函理論 (Density Functional Theory, DFT) 33 2-6 電化學測試原理 37 2-6-1 循環伏安法 (Cyclic voltammetry) 37 2-6-2 電化學充放電 38 2-6-3 交流阻抗理論 39 2-6-3.1 等效電路模擬系統 43 2-7 黏著劑(binder)的種類與發展 46 2-7-1 聚偏二氟乙烯Polyvinylidene fluoride (PVDF) 46 2-7-2 聚四氟乙烯Polytetrafluoroethylene (PTFE) 47 2-7-3 羧甲基纖維素鈉Sodium carboxymethyl cellulose (CMC) 47 2-7-4 羧甲基纖維素鈉/苯乙烯丁二烯橡膠Sodium carboxymethylcellulose/Styrene-Butadiene Rubber (CMC/SBR) 48 2-7-5 聚乙烯吡咯烷酮Polyvinylpyrrolidone (PVP) 48 2-7-6 纖維素Cellulose 49 2-8 聚丙烯腈(PAN)的性質與回顧 50 第三章 藥品、材料與儀器設備 52 3-1 藥品與材料 52 3-2 實驗儀器與設備 53 3-3 電化學測量分析 54 3-3-1 循環伏安法 (Cyclic Voltammetry, CV) 54 3-3-2 定電流充放電 (Galvanostatic Charge-Discharge, GCD) 54 3-3-3 離子傳導度分析 (Ionic Conductivity, ơ) 54 3-3-4 交流阻抗分析 (Electrochemistry Impedance Spectroscopy, EIS) 55 3-3-5 長效性測試 (Cycling test) 55 3-4 分析儀器原理簡介 56 3-4-1 物理吸附分析 (Brunauer-Emmet-Teller, BET) 56 3-4-2 動態光散射粒徑分析儀 (Dynamic Light Scattering , DLS) 57 3-4-3 流變儀 (Discovery Hybrid Rheometer, DHR) 58 第四章 不同黏著劑應用於超級電容器 59 4-1 實驗步驟 59 4-1-1 碳漿料的製備 60 4-1-2 碳電極的製備 61 4-1-3 電容器的組裝 61 4-2 結果與討論 62 4-2-1 瀝青活性碳材之孔洞結構分析 62 4-2-1.1 氮氣吸脫附實驗 62 4-2-1.2 孔徑分布之探討 64 4-2-2 瀝青活性碳材之粒徑分析 66 4-2-3 純碳材電化學測試 68 4-2-3.1 定電流充放電之分析 68 4-2-4 油系黏著劑PN-MA應用於超級電容器之最適化參數探討 70 4-2-4.1 循環伏安法分析 71 4-2-4.2 定電流充放電分析 73 4-2-5 水系黏著劑CMC/SBR應用於超級電容器之最適化參數探討 76 4-2-5.1 循環伏安法分析 79 4-2-5.2 定電流充放電分析 80 4-2-6 超級電容器長效循環測試 83 第五章 膠固態電解質導入超級電容器之開發研究 86 5-1 實驗步驟 86 5-1-1 碳漿料的製備 87 5-1-2 碳電極的製備 87 5-1-3 膠固態電解質的製備 88 5-1-4 製程參數的調控 90 5-1-5 電容器的組裝 92 5-2 結果與討論 93 5-2-1 瀝青活性碳材之孔洞結構分析 93 5-2-1.1 氮氣吸脫附實驗 93 5-2-1.2 孔徑分布之探討 94 5-2-2 GPE-AN膠固態電解質最適化 96 5-2-2.1 循環伏安法分析 96 5-2-2.2 定電流充放電分析 98 5-2-3 GPE-ANEG膠固態電解質最適化 100 5-2-3.1 循環伏安法分析 100 5-2-3.2 定電流充放電分析 102 5-2-4 離子傳導度測試 105 5-2-5 黏度測試 110 5-2-6 電位窗分析 111 5-2-7 交流阻抗分析及討論 113 5-2-8 超級電容器電化學行為表現 116 5-3 文獻比較 119 第六章 結論 120 參考文獻 121

    [1] C. K. Chan, R. N. Patel, M. J. O’connell, B. A. Korgel, Y. Cui, "Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes". ACS nano 2010, 4, 1443.
    [2] A. Burke, "Ultracapacitors: Why, How, and Where is the Technology". J. power sources 2000, 91, 37.
    [3] J. R. Miller, P. Simon, "Electrochemical Capacitors for Energy Management". science 2008, 321, 651.
    [4] Y. Kumar, G. Pandey, S. Hashmi, "Gel Polymer Electrolyte Based Electrical Double Layer Capacitors: Comparative Study with Multiwalled Carbon Nanotubes and Activated Carbon Electrodes". J. Phys. Chem. C 2012, 116, 26118.
    [5] P. Simon, Y. Gogotsi, in Nanoscience and Technology: A Collection of Reviews from Nature Journals, World Sci. 2010, p. 320.
    [6] J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. Mohana Reddy, J. Yu, R. Vajtai, "Ultrathin Planar Graphene Supercapacitors". Nano lett. 2011, 11, 1423.
    [7] S. Yoon, J. Lee, T. Hyeon, S. M. Oh, "Electric Double‐Layer Capacitor Performance of a New Mesoporous Carbon". J. Electrochem. Soc. 2000, 147, 2507.
    [8] M. F. El-Kady, V. Strong, S. Dubin, R. B. Kaner, "Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors". Science 2012, 335, 1326.
    [9] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, "Ultrahigh-Power Micrometre-Sized Supercapacitors Based on Onion-Like Carbon". Nat. Nanotechnol. 2010, 5, 651.
    [10] J. Zheng, T. Jow, "High Energy and High Power Density Electrochemical Capacitors". J. power sources 1996, 62, 155.
    [11] M. D. Stoller, R. S. Ruoff, "Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors". Energy Environ. Sci. 2010, 3, 1294.
    [12] C.-W. Huang, C.-M. Chuang, J.-M. Ting, H. Teng, "Significantly Enhanced Charge Conduction in Electric Double Layer Capacitors Using Carbon Nanotube-Grafted Activated Carbon Electrodes". J. power sources 2008, 183, 406.
    [13] S. Yoon, S. M. Oh, C. W. Lee, J.-W. Lee, "Influence of Particle Size on Rate Performance of Mesoporous Carbon Electric Double-Layer Capacitor (EDLC) Electrodes". J. Electrochem. Soc. 2010, 157, A1229.
    [14] J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi, "Effect of Pore Size and Surface Area of Carbide Derived Carbons on Specific Capacitance". J. power sources 2006, 158, 765.
    [15] H.-C. Huang, C.-W. Huang, C.-T. Hsieh, P.-L. Kuo, J.-M. Ting, H. Teng, "Photocatalytically Reduced Graphite Oxide Electrode for Electrochemical Capacitors". J. Phys. Chem. 2011, 115, 20689.
    [16] K. Jost, G. Dion, Y. Gogotsi, "Textile Energy Storage in Perspective". J. Mater. Chem. A 2014, 2, 10776.
    [17] A. Du Pasquier, I. Plitz, J. Gural, S. Menocal, G. Amatucci, "Characteristics and Performance of 500 F Asymmetric Hybrid Advanced Supercapacitor Prototypes". J. power sources 2003, 113, 62.
    [18] P. Simon, Y. Gogotsi, "Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems". Acc. Chem. Res. 2013, 46, 1094.
    [19] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, "Supercapacitor Devices Based on Graphene Materials". J. Phys. Chem. C 2009, 113, 13103.
    [20] T. L. Makarova, B. Sundqvist, P. Scharff, M. Gaevski, E. Olsson, V. Davydov, A. Rakhmanina, L. Kashevarova, "Electrical Properties of Two-Dimensional Fullerene Matrices". Carbon 2001, 39, 2203.
    [21] D. Eder, "Carbon Nanotube− Inorganic Hybrids". Chem. Rev. 2010, 110, 1348.
    [22] D. Li, R. B. Kaner, "Graphene-Based Materials". Science 2008, 320, 1170.
    [23] M. J. Allen, V. C. Tung, R. B. Kaner, "Honeycomb Carbon: A Review of Graphene". Chem. Rev. 2010, 110, 132.
    [24] A. B. Fuertes, S. Alvarez, "Graphitic Mesoporous Carbons Synthesised Through Mesostructured Silica Templates". Carbon 2004, 42, 3049.
    [25] C. Arbizzani, M. Mastragostino, L. Meneghello, "Polymer-Based Redox Supercapacitors: A Comparative Study". Electrochim. Acta 1996, 41, 21.
    [26] W. Xing, S. Qiao, R. Ding, F. Li, G. Lu, Z. Yan, H. Cheng, "Superior electric Double Layer Capacitors Using Ordered Mesoporous Carbons". Carbon 2006, 44, 216.
    [27] B. Marsan, N. Fradette, G. Beaudoin, "Physicochemical and Electrochemical Properties of CuCo2 O 4 Electrodes Prepared by Thermal Decomposition for Oxygen Evolution". J. Electrochem. Soc. 1992, 139, 1889.
    [28] R. Sharma, A. Rastogi, S. Desu, "Pulse Polymerized Polypyrrole Electrodes for High Energy Density Electrochemical Supercapacitor". Electrochem commun 2008, 10, 268.
    [29] M. Mastragostino, C. Arbizzani, F. Soavi, "Conducting Polymers as Electrode Materials in Supercapacitors". Solid State Ion 2002, 148, 493.
    [30] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, "A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors". Chem. Soc. Rev. 2015, 44, 7484.
    [31] M.-F. Hsueh, C.-W. Huang, C.-A. Wu, P.-L. Kuo, H. Teng, "The Synergistic Effect of Nitrile and Ether Functionalities for Gel Electrolytes Used in Supercapacitors". J. Phys. Chem. C 2013, 117, 16751.
    [32] H.-C. Huang, Y.-C. Yen, J.-C. Chang, C.-W. Su, P.-Y. Chang, I.-W. Sun, C.-T. Hsieh, Y.-L. Lee, H. Teng, "An Ether Bridge Between Cations to Extend the Applicability of Ionic Liquids in Electric Double Layer Capacitors". J. Mater. Chem. A 2016, 4, 19160.
    [33] P. Kossyrev, "Carbon Black Supercapacitors Employing Thin Electrodes". J. power sources 2012, 201, 347.
    [34] C. Du, N. Pan, "Supercapacitors Using Carbon Nanotubes Films by Electrophoretic Deposition". J. power sources 2006, 160, 1487.
    [35] L. L. Zhang, X. Zhao, "Carbon-Based Materials as Supercapacitor Electrodes". Chem. Soc. Rev. 2009, 38, 2520.
    [36] J. S. Mattson, H. B. Mark, Activated carbon: surface chemistry and adsorption from solution, M. Dekker, 1971.
    [37] H. D. Young, R. A. Freedman, L. Ford, Pearson education, 2007.
    [38] C. Brett, A. M. Oliveira Brett, Electrochemistry: Principles, Methods, and Applications, 1993.
    [39] D. Qu, H. Shi, "Studies of Activated Carbons Used in Double-Layer Capacitors". J. power sources 1998, 74, 99.
    [40] E. Frackowiak, K. Jurewicz, S. Delpeux, F. Béguin, "Nanotubular Materials for Supercapacitors". J. power sources 2001, 97, 822.
    [41] K. Kinoshita, "Carbon: Electrochemical and Physicochemical Properties". 1988.
    [42] T. C. Weng, H. S. Teng, "Characterization of High Porosity Carbon Electrodes Derived from Mesophase Pitch for Electric Double-Layer Capacitors". J. Electrochem. Soc. 2001, 148, A368.
    [43] M. Endo, Y. J. Kim, T. Takeda, T. Maeda, T. Hayashi, K. Koshiba, H. Hara, M. S. Dresselhaus, "Poly(vinylidene chloride)-Based Carbon as an Electrode Material for High Power Capacitors with an Aqueous Electrolyte". J. Electrochem. Soc. 2001, 148, A1135.
    [44] L. Wei, K. Tian, Y. Jin, X. Zhang, X. Guo, "Three-Dimensional Porous Hollow Microspheres of Activated Carbon for High-Performance Electrical Double-Layer Capacitors". Microporous Mesoporous Mater. 2016, 227, 210.
    [45] H. Luo, Y. Yang, Y. Sun, D. Chen, X. Zhao, D. Zhang, J. Zhang, "Highly Nanoporous Carbons by Single-Step Organic Salt Carbonization for High-Performance Supercapacitors". J Appl Electrochem 2015, 45, 839.
    [46] H. Teng, Y.-J. Chang, C.-T. Hsieh, "Performance of Electric Double-Layer Capacitors Using Carbons Prepared from Phenol–Formaldehyde Resins by KOH Etching". Carbon 2001, 39, 1981.
    [47] X. Wei, S. Wan, X. Jiang, Z. Wang, S. Gao, "Peanut-Shell-Like Porous Carbon from Nitrogen-Containing Poly-N-phenylethanolamine for High-Performance Supercapacitor". ACS Appl. Mater. Interfaces 2015, 7, 22238.
    [48] P.-X. Hou, T. Yamazaki, H. Orikasa, T. Kyotani, "An Easy Method for the Synthesis of Ordered Microporous Carbons by the Template Technique". Carbon (New York, NY) 2005, 43, 2624.
    [49] T. Kyotani, T. Nagai, S. Inoue, A. Tomita, "Formation of New Type of Porous Carbon by Carbonization in Zeolite Nanochannels". Chem. Mater. 1997, 9, 609.
    [50] H. Nishihara, H. Itoi, T. Kogure, P. X. Hou, H. Touhara, F. Okino, T. Kyotani, "Investigation of the Ion Storage/Transfer Behavior in an Electrical Double‐Layer Capacitor by Using Ordered Microporous Carbons as Model Materials". Chem. Eur. J. 2009, 15, 5355.
    [51] Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J. E. Fischer, B. Yi, H. C. Foley, M. W. Barsoum, "Nanoporous Carbide-Derived Carbon with Tunable Pore Size". Nat. Mater. 2003, 2, 591.
    [52] R. Dash, G. Yushin, Y. Gogotsi, "Synthesis, Structure and Porosity Analysis of Microporous and Mesoporous Carbon Derived from Zirconium Carbide". Microporous Mesoporous Mater. 2005, 86, 50.
    [53] Y. Gogotsi, R. K. Dash, G. Yushin, T. Yildirim, G. Laudisio, J. E. Fischer, "Tailoring of Nanoscale Porosity in Carbide-Derived Carbons for Hydrogen Storage". J. Am. Chem. Soc. 2005, 127, 16006.
    [54] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.-L. Taberna, "Anomalous Increase in Carbon Capacitance at Pore Sizes Less than 1 Nanometer". science 2006, 313, 1760.
    [55] Y. Chen, X. Zhang, P. Yu, Y. Ma, "Electrophoretic Deposition of Graphene Nanosheets on Nickel Foams for Electrochemical Capacitors". J. power sources 2010, 195, 3031.
    [56] L. Zhang, G. Shi, "Preparation of Highly Conductive Graphene Hydrogels for Fabricating Supercapacitors with High Rate Capability". J. Phys. Chem. C 2011, 115, 17206.
    [57] S. Vivekchand, C. S. Rout, K. Subrahmanyam, A. Govindaraj, C. Rao, "Graphene-Based Electrochemical Supercapacitors". J Chem Sci (Bangalore) 2008, 120, 9.
    [58] X. Liu, T. Osaka, "All‐Solid‐State Electric Double‐Layer Capacitor with Isotropic High‐Density Graphite Electrode and Polyethylene Oxide/LiClO4 Polymer Electrolyte". J. Electrochem. Soc. 1996, 143, 3982.
    [59] S. Mitra, S. Sampath, "Electrochemical Capacitors Based on Exfoliated Graphite Electrodes". J. Electrochem. Soc. 2004, 7, A264.
    [60] H. K. Bok, S. M. Oh, "Electrochemical Activation of Expanded Graphite Electrode for Electrochemical Capacitor". J. Electrochem. Soc. 2008, 155, A685.
    [61] V. Ruiz, C. Blanco, R. Santamaría, J. M. Ramos-Fernández, M. Martínez-Escandell, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, "An Activated Carbon Monolith as an Electrode Material for Supercapacitors". Carbon 2009, 47, 195.
    [62] H.-C. Huang, C.-W. Huang, C.-T. Hsieh, H. Teng, "Electric Double Layer Capacitors of High Volumetric Energy Based on Ionic Liquids and Hierarchical-Pore Carbon". J. Mater. Chem. A 2014, 2, 14963.
    [63] S. Brunauer, The Adsorption of Gases and Vapors Vol I-Physical Adsorption, Brunauer Press, 2008.
    [64] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, "Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984)". Pure Appl. Chem. 1985, 57, 603.
    [65] S. Brunauer, P. H. Emmett, E. Teller, "Adsorption of Gases in Multimolecular Layers". J. Am. Chem. Soc. 1938, 60, 309.
    [66] E. P. Barrett, L. G. Joyner, P. P. Halenda, "The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms". J. Am. Chem. Soc. 1951, 73, 373.
    [67] P. Tarazona, U. M. B. Marconi, R. Evans, "Phase Equilibria of Fluid Interfaces and Confined Fluids: Non-Local versus Local Density Functionals". Mol Phys 1987, 60, 573.
    [68] J. Landers, G. Y. Gor, A. V. Neimark, "Density Functional Theory Methods for Characterization of Porous Materials". Colloids Surf. A Physicochem. Eng. Asp. 2013, 437, 3.
    [69] J. Jagiello, J. Kenvin, J. P. Olivier, A. R. Lupini, C. I. Contescu, "Using a New Finite Slit Pore Model for NLDFT Analysis of Carbon Pore Structure". Adsorpt Sci Technol 2011, 29, 769.
    [70] J. Jagiello, J. P. Olivier, "2D-NLDFT Adsorption Models for Carbon Slit-Shaped Pores with Surface Energetical Heterogeneity and Geometrical Corrugation". Carbon 2013, 55, 70.
    [71] A. J. Bard, L. R. Faulkner, "Fundamentals and Applications". Electrochemical Methods 2001, 2, 580.
    [72] B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Springer Science & Business Media, 2013.
    [73] J. E. B. Randles, "Kinetics of Rapid Electrode Reactions". Discuss Faraday Soc 1947, 1, 11.
    [74] E. Warburg, "Ueber Das Verhalten Sogenannter Unpolarisirbarer Elektroden Gegen Wechselstrom". Ann Phys 1899, 303, 493.
    [75] R. De Levie, "On Porous Electrodes in Electrolyte Solutions: I. Capacitance Effects". Electrochim. Acta 1963, 8, 751.
    [76] R. De Levie, "On porous Electrodes in Electrolyte Solutions—IV". Electrochim. Acta 1964, 9, 1231.
    [77] R. De Levie, "The Influence of Surface Roughness of Solid Electrodes on Electrochemical Measurements". Electrochim. Acta 1965, 10, 113.
    [78] H. El Brouji, J.-M. Vinassa, O. Briat, N. Bertrand, E. Woirgard, presented at 2008 IEEE Vehicle Power and Propulsion Conference 2008.
    [79] K.-C. Tsay, L. Zhang, J. Zhang, "Effects of Electrode Layer Composition/Thickness and Electrolyte Concentration on Both Specific Capacitance and Energy Density of Supercapacitor". Electrochim. Acta 2012, 60, 428.
    [80] A. Daraghmeh, S. Hussain, L. Servera, E. Xuriguera, A. Cornet, A. Cirera, "Impact of Binder Concentration and Pressure on Performance of Symmetric CNFs Based Supercapacitors". Electrochim. Acta 2017, 245, 531.
    [81] M. Aslan, D. Weingarth, N. Jäckel, J. Atchison, I. Grobelsek, V. Presser, "Polyvinylpyrrolidone as Binder for Castable Supercapacitor Electrodes with High Electrochemical Performance in Organic Electrolytes". J. power sources 2014, 266, 374.
    [82] X. Sun, X. Zhang, H. Zhang, B. Huang, Y. Ma, "Application of a Novel Binder for Activated Carbon-Based Electrical Double Layer Capacitors with Nonaqueous Electrolytes". J Solid State Electrochem 2013, 17, 2035.
    [83] B. Song, F. Wu, Y. Zhu, Z. Hou, K.-s. Moon, C.-P. Wong, "Effect of Polymer Binders on Graphene-Based Free-Standing Electrodes for Supercapacitors". Electrochim. Acta 2018, 267, 213.
    [84] N. Böckenfeld, S. Jeong, M. Winter, S. Passerini, A. Balducci, "Natural, Cheap and Environmentally Friendly Binder for Supercapacitors". J. power sources 2013, 221, 14.
    [85] M. Yamagata, S. Ikebe, K. Soeda, M. Ishikawa, "Ultrahigh-Performance Nonaqueous Electric Double-Layer Capacitors Using an Activated Carbon Composite Electrode with Alginate". RSC Adv. 2013, 3, 1037.
    [86] L. Kouchachvili, N. Maffei, E. Entchev, "Novel Binding Material for Supercapacitor Electrodes". J Solid State Electrochem 2014, 18, 2539.
    [87] S. Xun, X. Song, V. Battaglia, G. Liu, "Conductive Polymer Binder-Enabled Cycling of Pure Tin Nanoparticle Composite Anode Electrodes for a Lithium-Ion Battery". J. Electrochem. Soc. 2013, 160, A849.
    [88] J. Yang, Y. Takeda, N. Imanishi, T. Ichikawa, O. Yamamoto, "Study of the Cycling Performance of Finely Dispersed Lithium Alloy Composite Electrodes Under High Li-Utilization". J. power sources 1999, 79, 220.
    [89] A. Varzi, R. Raccichini, M. Marinaro, M. Wohlfahrt-Mehrens, S. Passerini, "Probing the Characteristics of Casein as Green Binder for Non-Aqueous Electrochemical Double Layer Capacitors' Electrodes". J. power sources 2016, 326, 672.
    [90] H. Buqa, M. Holzapfel, F. Krumeich, C. Veit, P. Novák, "Study of Styrene Butadiene Rubber and Sodium Methyl Cellulose as Binder for Negative Electrodes in Lithium-Ion Batteries". J. power sources 2006, 161, 617.
    [91] F. Sebesta, J. John, A. Motl, K. Stamberg, Sandia National Labs., 1995.
    [92] P. Ghosh, P. K. Ganguly, "Polyacrylonitrile (PAN)‐Grafted Jute Fibres: Some Physical and Chemical Properties and Morphology". J. Appl. Polym. Sci. 1994, 52, 77.
    [93] P. Raghavan, J. Manuel, X. Zhao, D.-S. Kim, J.-H. Ahn, C. Nah, "Preparation and Electrochemical Characterization of Gel Polymer Electrolyte Based on Electrospun Polyacrylonitrile Nonwoven Membranes for Lithium Batteries". J. power sources 2011, 196, 6742.
    [94] G. Wu, H.-Y. Yang, H.-Z. Chen, F. Yuan, L.-G. Yang, M. Wang, R.-J. Fu, "Novel Porous Polymer Electrolyte Based on Polyacrylonitrile". Mater. Chem. Phys. 2007, 104, 284.
    [95] D. Zhou, G. Wang, W. Li, G. Li, C. Tan, M. Rao, Y. Liao, "Preparation and Performances of Porous Polyacrylonitrile–Methyl Methacrylate Membrane for Lithium-Ion Batteries". J. power sources 2008, 184, 477.
    [96] X. He, N. Zhang, X. Shao, M. Wu, M. Yu, J. Qiu, "A Layered-Template-Nanospace-Confinement Strategy for Production of Corrugated Graphene Nanosheets from Petroleum Pitch for Supercapacitors". Chem. Eng. J. 2016, 297, 121.
    [97] Y. Wu, Lithium-ion batteries: Fundamentals and applications, CRC Press, 2015.
    [98] S.-H. Wang, Y.-Y. Lin, C.-Y. Teng, Y.-M. Chen, P.-L. Kuo, Y.-L. Lee, C.-T. Hsieh, H. Teng, "Immobilization of Anions on Polymer Matrices for Gel Electrolytes with High Conductivity and Stability in Lithium Ion Batteries". ACS Appl. Mater. Interfaces 2016, 8, 14776.
    [99] X. Ma, X. Huang, J. Gao, S. Zhang, Z. Deng, J. Suo, "Compliant Gel Polymer Electrolyte Based on Poly (methyl acrylate-co-acrylonitrile)/poly (vinyl alcohol) for Flexible Lithium-Ion Batteries". Electrochim. Acta 2014, 115, 216.
    [100] E. Zengeni, P. Hartmann, R. Sanderson, P. Mallon, "Poly (acrylonitrile‐co‐methyl acrylate) Copolymers: Correlation Between Copolymer Composition, Morphology and Positron Annihilation Lifetime Parameters". J. Appl. Polym. Sci. 2011, 119, 1060.
    [101] G. Henrici-Olive, S. Olivé, in Chemistry, Springer 1979, p. 123.
    [102] C.-W. Tu, K.-Y. Liu, A.-T. Chien, C.-H. Lee, K.-C. Ho, K.-F. Lin, "Performance of Gelled-Type Dye-Sensitized Solar Cells Associated with Glass Transition Temperature of the Gelatinizing Polymers". Eur. Polym. J. 2008, 44, 608.
    [103] P. Rangarajan, V. Bhanu, D. Godshall, G. Wilkes, J. McGrath, D. Baird, "Dynamic Oscillatory Shear Properties of Potentially Melt Processable High Acrylonitrile Terpolymers". Polymer 2002, 43, 2699.
    [104] P. Carol, P. Ramakrishnan, B. John, G. Cheruvally, "Preparation and Characterization of Electrospun Poly (acrylonitrile) Fibrous Membrane Based Gel Polymer Electrolytes for Lithium-Ion Batteries". J. power sources 2011, 196, 10156.
    [105] D. M. Seo, O. Borodin, S.-D. Han, Q. Ly, P. D. Boyle, W. A. Henderson, "Electrolyte Solvation and Ionic Association". J. Electrochem. Soc. 2012, 159, A553.
    [106] C. M. Mathew, K. Kesavan, S. Rajendran, "Dielectric and Thermal Response of Poly [(vinylidene chloride)‐co‐acrylonitrile]/poly (methyl methacrylate) Blend Membranes". Polym Int 2015, 64, 750.
    [107] C. M. S. Prasanna, S. A. Suthanthiraraj, "Dielectric and Thermal Features of Zinc Ion Conducting Gel Polymer Electrolytes (GPEs) Containing PVC/PEMA Blend and EMIMTFSI Ionic Liquid". Ionics 2018, 24, 2631.
    [108] P. Hu, Y. L. Duan, D. P. Hu, B. S. Qin, J. J. Zhang, Q. F. Wang, Z. H. Liu, G. L. Cui, L. Q. Chen, "Rigid-Flexible Coupling High Ionic Conductivity Polymer Electrolyte for an Enhanced Performance of LiMn2O4/Graphite Battery at Elevated Temperature". ACS Appl. Mater. Interfaces 2015, 7, 4720.
    [109] D. W. Janes, J. F. Moll, S. E. Harton, C. J. Durning, "Dispersion Morphology of Poly(methyl acrylate)/Silica Nanocomposites". Macromolecules 2011, 44, 4920.
    [110] J. Saunier, F. Alloin, J.-Y. Sanchez, G. Caillon, "Thin and Flexible Lithium-Ion Batteries: Investigation of Polymer Electrolytes". J. power sources 2003, 119, 454.
    [111] M. H. Cohen, D. Turnbull, "Molecular Transport in Liquids and Glasses". J. Chem. Phys. 1959, 31, 1164.

    下載圖示 校內:2025-07-14公開
    校外:2025-07-14公開
    QR CODE