| 研究生: |
顏涵湘 Yen, Han-Hsiang |
|---|---|
| 論文名稱: |
中國八大綜合經濟區二氧化碳排放量之探討 Carbon Dioxide Emissions Analysis of Eight Chinese Economic Regions |
| 指導教授: |
張瀞之
Chang, Ching-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 二氧化碳排放量 、能源消耗 、VAR模型 、VECM模型 |
| 外文關鍵詞: | CO2 emissions, energy consumption, VECM model, VAR model |
| 相關次數: | 點閱:80 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用時間序列經濟模型探討中國八大綜合經濟區二氧化碳排放量與能源消耗、產業結構、經濟成長之關係,並分別採用單根檢定、共整合檢定、向量誤差修正模型、向量自我迴歸模型及Granger因果關係檢定進行實證研究。實證結果顯示:(1)單根PP檢定經過一階差分後,顯示二氧化碳排放來源因子(天然氣、固態燃料、水泥生產)、能源消耗來源因子(煤、天然氣、主要電力)、能源消耗產業別因子(交通業、民生消費、商業)與國內生產毛額屬於定態之時間數列,因此上述因子將採用並作共整合檢定。(2) Johansen 共整合檢定發現南部沿海地區、西南地區二氧化碳排放與二氧化碳排放來源(天然氣、固態燃料、水泥製造)、中國八大經濟區域二氧化碳排放與能源消耗來源(煤、天然氣、主要電力)、中國八大經濟區域二氧化碳排放與交通、民生消費、商業之能源消耗等分別具有長期均衡關係,代表長期而言變數會往均衡方向調整,短期之動態關係本文以向量誤差修正模型(VECM)修正。(3)以VECM模式檢定發現固態燃料二氧化碳排放,為南部沿海地區空氣汙染的主要原因;主要電力之能源消耗,為東北、北部沿海、東部沿海、黃河中下游、長江中游、與大西北空氣汙染的主要原因;煤、天然氣之能源消耗,為南部沿海地區空氣汙染的主要原因;民生消費之能源消耗,為東北、北部沿海、東部沿海、南部沿海、西南、大西北等地區空氣汙染的主要原因;商業之能源消耗,為東北、黃河中下游、長江中游、西南、與大西北等地區空氣汙染的主要原因;交通業之能源消耗,為西南地區空氣汙染的主要原因。(4)Granger因果關係之研究結果顯示東北、北部沿海、東部沿海、南部沿海、黃河中下游、長江中游、大西北地區二氧化碳排放量與天然氣、固態燃料二氧化碳排放量具有單向因果關係;水泥生產排放的二氧化碳量與東北、北部沿海、東部沿海、南部沿海、黃河中下游、長江中游、大西北地區二氧化碳排放量存在單向因果關係;東北、東部沿海、黃河中下游、長江中游、西南、與大西北等地區二氧化碳排放量與國內生產毛額(GDP)存在單項因果關係。本研究實證結果得知中國各區域二氧化碳排放之因素,有利於能源政策與減排策略制定,進行產業結構的調整,進而減緩全球暖化。
This research adopts a time series economic model to determine the causality between carbon dioxide emissions, energy consumption, industry structure and economic growth of eight economic regions in China. The unit root test, cointegration test, vector error correction model (VECM), vector autoregression model (VAR), and Granger test are all used for empirical research, and the results are as follows: (1) After examining the first differences of the unit root test, the results show that sources of CO2 emissions (natural gas, solid fuels, and cement production), sources of energy consumption (coal, natural gas, and primary electricity), energy consumption by sector (transportation, residential, and commercial) and gross domestic product (GDP) are stationary times series. (2) The results of the Johansen Cointegration test show there is a long-term stationary relationship between CO2 emissions in the southern coastal areas and southwest China, and the sources of CO2 emissions (natural gas, solid fuels, and cement production). In addition, there is a long-term stationary relationship between CO2 emissions in eight Chinese economic regions and the sources of energy consumption (coal, natural gas, and primary electricity). There is also a long-term stationary relationship between CO2 emissions in these regions and transportation, residential, and commercial consumption. This means that in the long term all the variables will move to equilibrium, and therefore the short term changing relationship will be modified by VECM.
(3) The results of VECM show that CO2 emissions from the use of solid fuel is the main cause of the air pollution in the southern coastal areas of China. In addition, the consumption of major electricity is the main cause of air pollution in the northeast, northern coastal areas, eastern coastal areas, middle reaches of the Yellow River region, middle reaches of the Yangtze River region, and northwest region of China. In contrast, energy consumption related to coal and natural gas is the main reason for the air pollution in the southern coastal areas. Residential energy consumption is the main reason for the air pollution in the northeast, northern coastal areas, eastern coastal areas, the southern coastal areas, southwest, and northwest region of China. Commercial energy consumption is the main reason for air pollution in the northeast, middle reaches of the Yellow River region, middle reaches of the Yangtze River region, southwest, and northwest region of China. Energy consumption related to transportation is the main reason for air pollution in the southwest of China. (4) The results of the Granger causality test show that the CO2 emissions of natural gas and solid fuel are Granger caused by CO2 emissions in the northeast, northern coastal areas, eastern coastal areas, southern coastal areas, middle reaches of the Yellow River region, middle reaches of the Yangtze River region, and northwest region of China. CO2 emissions in the Northeast, northern coastal areas, eastern coastal areas, southern coastal areas, middle reaches of the Yellow River region, middle reaches of the Yangtze River region, and northwest region are Granger caused by CO2 emissions of cement production. GDP is Granger caused by CO2 emissions in the northeast, eastern coastal areas, middle reaches of the Yellow River region, middle reaches of the Yangtze River region, southwest, and northwest region of China. This empirical investigation shows the reasons for CO2 emissions in every region in China, and is helpful to the establishment of an appropriate energy policy and reduction strategies to foster changes in industrial structures and combat global warning.
ㄧ、中文文獻
中華人民共和國國家統計局. (1996-2006). 中國統計年鑑.
徐薇. (2006). 中國能源消耗變動趨勢及對策研. 煤炭經濟研究(1), 40-43.
經濟時空. (1978-1995). 中國經濟數據.
http://time.dufe.edu.cn/data/2007-11-26/222.html
黃耀. (2006). 中國的溫室氣體排放、減排措施與對策. 中國科學院大氣物理研究所, 26(5), 722-732.
楊奕農. (2007). 時間序列分析經濟與財務上之應用.
二、英文文獻
Asafu-Adjaye, J. (2000). The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries. Energy Economics, 22, 615-625.
Cheng, B. S., & Tin, W. L. (1997). An investigation of co-integration and causality between energy consumption and economic activity in Taiwan. Energy Economics, 19, 435-444.
Energy Information Administration. (2006). International Energy Annual 2006.
Fridley, D., & Aden, N. (2008). China Energy Databook. 230,259.
He, J., Deng, J., & Su, M. (2009). CO2 emission from China's energy sector and strategy for its control. [doi: DOI: 10.1016/j.energy.2009.04.009]. Energy, In Press, Corrected Proof.
Hidalgo, I., Szabo, L., Carlos Ciscar, J., & Soria, A. (2005). Technological prospects and CO2 emission trading analyses in the iron and steel industry: A global model. Energy, 30, 583-610.
Hondroyiannis, G., Lolos, S., & Papapetrou, E. (2002). Energy consumption and economic growth: assessing the evidence from Greece. Energy Economics, 24, 319-336.
Ipek Tunç, G., Türüt-AsIk, S., & AkbostancI, E. (2009). A decomposition analysis of CO2 emissions from energy use: Turkish case. [doi: DOI: 10.1016/j.enpol.2009.06.019]. Energy Policy, 37(11), 4689-4699.
Kaneko, S., Yonamine, A., & Jung, T. Y. (2006). Technology choice and CDM projects in China: case study of a small steel company in Shandong Province. [doi: DOI: 10.1016/j.enpol.2004.10.006]. Energy Policy, 34(10) , 1139-1151.
Liang, Q.-M. , Fan, Y. , & Wei, Y.-M. (2007). Multi-regional input-output model for regional energy requirements and CO2 emissions in China. [doi: DOI: 10.1016/j.enpol.2006.04.018]. Energy Policy, 35(3) , 1685-1700.
Sadorsky, P. (2009). Renewable energy consumption, CO2 emissions and oil prices in the G7 countries. [doi: DOI: 10.1016/j.eneco.2008.12.010]. Energy Economics, 31(3) , 456-462.
Soytas,U. ,& Sari, R. (2003). Energy consumption and GDP: causality relationship in G-7 countries and emerging markets. Energy Economics, 25, 33-37.
Stern, D. I. (2000). A multivariate cointegration analysis of the role of energy in the US macroeconomy. Energy Economics, 22, 267-283.
Timilsina, G. R. , & Shrestha, A. (2009). Transport sector CO2 emissions growth in Asia: Underlying factors and policy options. [doi: DOI: 10.1016/j.enpol.2009.06.009]. Energy Policy, 37(11) , 4523-4539.
World Resources Institute. (2009). Climate and Atmosphere -- CO2 Emissions: CO2 emissions per capita.
World Resources Institute. (2009). Climate and Atmosphere -- CO2 Emissions by Source.
Xiangzhao, F. , & Ji, Z. (2008). Economic Analysis of CO2 Emission Trends in China. [doi: DOI: 10.1016/S1872-583X(09)60005-X]. China Population, Resources and Environment, 18(3) , 43-47.
Yang, H.-Y. (2000). A note on the causal relationship between energy and GDP in Taiwan. Energy Economics, 22, 309-317.
Yuan, J.-H. , Kang, J.-G. , Zhao, C.-H. , & Hu, Z.-G. (2008). Energy consumption and economic growth: Evidence from China at both aggregated and disaggregated levels. [doi: DOI: 10.1016/j.eneco.2008.03.007]. Energy Economics, 30(6) , 3077-3094.
Zhang, M. , Mu, H. , Ning, Y. ,& Song, Y. (2009). Decomposition of energy-related CO2 emission over 1991-2006 in China. [doi: DOI: 10.1016/j.ecolecon.2009.02.005]. Ecological Economics, 68(7) , 2122-2128.
校內:2020-12-30公開