簡易檢索 / 詳目顯示

研究生: 蕭孟如
Xiao, Meng-Ru
論文名稱: 考量異質使用者之電動機車充電站選址模式
A Location Model for Heterogeneous Electric Scooter Users' Recharging Service
指導教授: 胡守任
Hu, Shou-Ren
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 78
中文關鍵詞: 電動機車旅程焦慮設站模型充電服務設施異質使用者
外文關鍵詞: Electric scooter, Range anxiety, Location model, Recharging service, Heterogeneous users
相關次數: 點閱:120下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 能源永續發展是二十一世紀的重要課題,為減少溫室氣體的排放,替代能源的發展備受關注;在綠色運輸上,電能被視為替代傳統能源的第二選擇,近年來電動車輛興起,各國積極地進行電動車的發展及推廣,並被視為減少環境汙染的解決方式之一。
      截至2015年為止,臺灣地區共有一千三百萬台內燃機機車,機車密度為全球之冠,也造成了大量的溫室氣體排放,而以電能發動的電動機車近幾年也在亞洲地區尉為盛行,電動機車具備便宜、環保及機動性高等特性,被認為將取代傳統內燃機機車;然而,其在臺灣地區並不普遍,與傳統機車相比數量非常稀少。
      一般而言,旅程焦慮(Range Anxiety)被視為是電動車發展的最大阻礙因素,旅程焦慮成因係民眾擔心電動車的續航力可能不足以讓他們到達目的地或完成一趟旅程。針對此問題,有效的設置能源補充設施,將有助於緩解民眾的焦慮,雖然過去有很多有關設置能源補充設施之文獻,但大多站在供給者的角度考量,鮮少考慮到使用者的旅行時間成本及民眾之旅程焦慮等議題,為提升電動機車使用率,這些因素都應納入考量。
    本研究提出一多目標設站模型,在滿足異質性使用者的充電需求之下,極小化供給者的設站成本與需求者的旅行時間總成本,進而在潛在設置點位中決定何處、設置何種類型與數量的充電站設置決策;在模式求解方面,本研究以LINGO套裝軟體求解。研究結果顯示:(1)在其他條件不變的情況下,異質性使用者需要比同質性使用者更多的充電設施;(2)在較寬鬆的充電設施設置數量限制之下,決策者可以擬定更具經濟效率的充電站設置計畫;以及(3)當使用者的旅行時間價值提高,電池交換設施所需設置的數量也隨之提高。本研究之相關成果,預計可以提供政府或業者進行有效的電動機車充電站設站點位的決策依據,同時提升電動機車的使用率。

    Energy sustainability has been a noticeable issue in the 21th century. To reduce greenhouse gas, alternative fuel such as electricity, appears to be the second choice for green transport. Development of Electric Vehicles (EVs) is an unstoppable trend, which has often been suggested as a solution to reduce fuel consumption and air pollution. In Taiwan, there are 1.37 million internal combustion engine scooters in 2015; the density of the scooters is the highest in the world. Electric Scooters (ESs), which have been widely adopted by Asians so far, have the characteristics of cheap, convenient, environmentally friendly and flexible. ESs are expected to replace traditional ones in the future. However, the popularities of ES in Taiwan are minuteness. The major barrier for people to adopt EVs is range anxiety, a fear caused by uncertain battery life and/or electricity duration of EVs. To alleviate this problem, strategically locating recharging services is indispensable. Although there are many studies about locating recharging services for EVs, most of them are conducted from the view point of the supplier. This study proposes a location model aiming at minimizing the total cost of supply and demand sides. The location model can help to decide which location(s) to locate multiple types of recharging services among potential candidate locations. The proposed model applies the Multi-Objective Programming (MOP) method by considering the traits of heterogeneous ESs users of different levels of range anxiety and values of time. The model formulation is solved by LINGO solver. The empirical study results indicate that: (1) heterogeneous users need more recharging services compared with those of homogeneous users’ demands, (2) with relaxed capacity constraints, the decision makers can make more economical locating plans, and (3) the higher the value of time of users is, the larger number of battery exchange services is. The ultimate goal of this study is to assist governments and/or commercial operators to make desirable location decisions for ES recharging services and stimulate the popularity of ESs.

    ABSTRACT(CHINESE).....................................I ABSTRACT.....................................II ACKNOWLEDGMENT(CHINESE).....................................III TABLE OF CONTENTS.....................................IV LIST OF TABLES.....................................VI LIST OF FIGURES.....................................VII CHAPTER 1 INTRODUCTION.....................................1 1.1 Research Background and Motivation.....................................1 1.2 Problem Statement.....................................5 1.3 Research Objective.....................................6 1.4 Research Flow Chart.....................................6 CHAPTER 2 LITERATURE REVIEW.....................................8 2.1 Electric Scooter.....................................8 2.1.1 Electric Scooter Worldwide.....................................10 2.1.2 Development of Electric Scooter in Taiwan.....................................12 2.1.3 Recharging Services for Electric Scooter.....................................14 2.2 Range Anxiety.....................................16 2.3 Location Model.....................................18 2.3.1 Location Problem.....................................18 2.3.2 Flow-Based Recharging Location Models.....................................21 2.4 Multi-Objective Programming (MOP).....................................26 2.4.1 Multi-Criteria Decision Making (MCDM).....................................26 2.4.2 Multi-Objective Programming (MOP).....................................27 2.5 Summary.....................................30 CHAPTER 3 MODEL DEVELOPMENT.....................................31 3.1 Problem Statement.....................................31 3.1.1 Vehicle Recharging Logic and Location for Heterogeneous Travelers.....................................36 3.1.2 Locating Different Types of Recharging Services.....................................37 3.2 Assumptions.....................................39 3.3 Model Formulation.....................................39 3.4 Basic Experiment.....................................42 3.5 Summary.....................................48 CHAPTER 4 EMPIRICAL STUDIES.....................................49 4.1 Data Collection.....................................49 4.2 Parameter Settings.....................................54 4.3 Basic Scenario.....................................55 4.4 Scenario 1.....................................57 4.5 Scenario 2.....................................61 4.6 Scenario 3.....................................65 4.7 Scenario 4.....................................69 4.8 Summary.....................................72 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS.....................................73 5.1 Conclusions.....................................73 5.2 Recommendations.....................................74 References.....................................75

    1. Adler, J. D., Mirchandani, P. B., Xue, G., & Xia, M. (2014). The electric vehicle shortest-walk problem with battery exchanges. Networks and Spatial Economics, 1-19.
    2. Azadfar, E., Sreeram, V., & Harries, D. (2015). The investigation of the major factors influencing plug-in electric vehicle driving patterns and charging behaviour. Renewable and Sustainable Energy Reviews, 42, 1065-1076.
    3. Bureau of Energy Ministry of Economic Affairs (2016). Statics of Greenhouse Gas Emission. <http://web3.moeaboe.gov.tw/ECW/populace/content/SubMenu.aspx?menu_id=114> (Accessed April 16, 2016).
    4. Bureau of Civil Affairs, Tainan City Government (2016). Population Data in Tainan, <http://www.tainan.gov.tw/agr/population.asp?nsub=I4A100> (Accessed May 10, 2016).
    5. Chen, L.-C., Lin, W.-L., & Chang, C.-Y. (2009). The Opportunity and challenge of Taiwan E2W industry in global E2W market. Chutung, Hsinchu, Taiwan: Industrial Technology Research Institute (ITRI).
    6. Current, J., Min, H., & Schilling, D. (1990). Multiobjective analysis of facility location decisions. European Journal of Operational Research, 49(3), 295-307.
    7. Curtin, R., Shrago, Y., & Mikkelsen, J. (2009). Plug-in hybrid electric vehicles. Reuters/University of Michigan, Surveys of Consumers.
    8. Directorate General of Highways, MOTC (2016). Network of Tainan City, <http://www.thb.gov.tw/> (Accessed May 10, 2016).
    9. Environmental Protection Administration Bureau (2016). Greenhouse Gas Emission Reduction and Management Act Section. <http://www.epa.gov.tw/mp.asp?mp=ghgact> (Accessed March 15, 2016).
    10. Franke, T., Neumann, I., Bühler, F., Cocron, P., & Krems, J. F. (2012). Experiencing range in an electric vehicle: Understanding psychological barriers.Applied Psychology, 61(3), 368-391.
    11. Franke, T., & Krems, J. F. (2013). What drives range preferences in electric vehicle travelers? Transport Policy, 30, 56-62.
    12. GOGORO (2016). GoStation. <http://www.gogoro.com/tw/goservice> (Accessed May10, 2016).
    13. Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations research, 12(3), 450-459.
    14. Hodgson, M. J. (1990). A Flow‐Capturing Location‐Allocation Model.Geographical Analysis, 22(3), 270-279.
    15. Hwang, C. L., & Masud, A. S. M. (1979). Multiple objective decision making—methods and applications.
    16. Hwang, C. L., Paidy, S. R., Yoon, K., & Masud, A. S. M. (1980). Mathematical programming with multiple objectives: A tutorial. Computers & Operations Research, 7(1), 5-31.
    17. He, F., Yin, Y. and Lawphongpanich, S. (2014), “Network equilibrium models with battery electric vehicles” Transportation Research Part B, Vol. 67, pp. 306-319.
    18. International Organization of Motor Vehicle Manufacturers (2016). Automobile Production. <http://www.oica.net.> (Accessed June 5, 2016).
    19. Jeeninga, H., van Arkel, W. G., & Volkers, C. H. (2002). Performance and acceptance of electric and hybrid vehicles. Municipality of Rotterdam, Rotterdam, The Netherlands.
    20. Kley, F., Lerch, C., & Dallinger, D. (2011). New business models for electric cars—A holistic approach. Energy Policy, 39(6), 3392-3403.
    21. Kuby, M., & Lim, S. (2005). The flow-recharging location problem for alternative-fuel vehicles. Socio-Economic Planning Sciences, 39(2), 125-145.
    22. Levinson, W., Kao, A., Kuby, A., & Thisted, R. A. (2005). Not all patients want to participate in decision making. Journal of general internal medicine, 20(6), 531-535.
    23. Law & Regulations Database of the Republic of China. (2016). Regulations Governing Road Traffic Safety. <http://law.moj.gov.tw/LawClass/LawContent.aspx?pcode=K0040013> (Accessed March 15, 2016).
    24. Nilsson, M. (2011). Electric vehicles: The phenomenon of range anxiety. Public deliverable: Task, 5000.
    25. Neumann, J. V., & Morgenstern, O. (1944). Theory of gamesand economic behavior.
    26. Navigant Research. (2016). Electric Motorcycles and Scooters. <https://www.navigantresearch.com/research/electric-motorcycles-and-scooters> (Accessed March 15, 2016).
    27. Ministry of Transportation and Communication, R.O.C. (2016). Electric Scooter Ratio. <http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a3301> (Accessed May 10, 2016).
    28. Owen, S. H., & Daskin, M. S. (1998). Strategic facility location: A review. European Journal of Operational Research, 111(3), 423-447.
    29. Severinsky, A. J. (1994). U.S. Patent No. 5,343,970. Washington, DC: U.S. Patent and Trademark Office.
    30. Sovacool, B. K., & Hirsh, R. F. (2009). Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition. Energy Policy, 37(3), 1095-1103.
    31. Sylvia, H., Lieselot, V., Luk, K., Declercq, K., Thierry, C. and Joeri, M. V. (2014), “Choosing an electric vehicle as a travel mode: Travel Diary Case Study in a Belgian Living Lab context,” Paper presented at the 93th Annual Meeting of the Transportation Research Board, Washington, D.C.
    32. Tamor, M. A., Gearhart, C. and Soto, C. (2013), “A Statistical approach to estimating acceptance of electric vehicles and electrification of personal transportation” Transportation Research Part C, Vol. 26, pp. 125-134.
    33. Ministry of Transportation and Communication, R.O.C. (2016). Transportation Stastics. <http://www.motc.gov.tw/ch/home.jsp?id=6&parentpath=0> (Accessed May 10, 2016).
    34. Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency service facilities. Operations Research, 19(6), 1363-1373.
    35. Upchurch, C., & Kuby, M. (2010). Comparing the p-median and flow-recharging models for locating alternative-fuel services. Journal of Transport Geography,18(6), 750-758.
    36. Velasquez, J. M., & Eisenbeiss, K. (2015). Emergence of Electric-Powered Two-Wheelers on Asian Roads: Curse or Blessing from a Sustainable Transport Perspective?. Transportation Research Record: Journal of the Transportation Research Board, (2503), 147-152.
    37. Wang, Y. W. (2007). An optimal location choice model for recreation-oriented scooter recharge services. Transportation Research Part D: Transport and Environment, 12(3), 231-237.
    38. Wang, Y. W. (2011). Locating flow-recharging services at tourist destinations to serve recreational travelers. International Journal of Sustainable Transportation,5(3), 153-171.
    39. Wang, Y. W., & Lin, C. C. (2009). Locating road-vehicle recharging services. Transportation Research Part E: Logistics and Transportation Review, 45(5), 821-829.
    40. Wang and Lin (2013), “Locating multiple types of Recharging services for battery-powered electric vehicle transport” Transportation Research Part E, Vol. 58, 76-87.
    41. Weber, A. (1909). Theory of industrial location.
    42. Weinert, J., Ogden, J., Sperling, D., & Burke, A. (2008). The future of electric two-wheelers and electric vehicles in China. Energy Policy, 36(7), 2544-2555.
    43. Yıldız, B., Arslan, O., & Karaşan, O. E. (2016). A branch and price approach for routing and recharging station location model. European Journal of Operational Research, 248(3), 815-826.
    44. Yu, D., Song, S., Zhang, B., & HAN, X. (2011). Synergistic dispatch of PEVs Recharging and wind power in Chinese regional power grids. Dianli Xitong Zidonghua (Automation of Electric Power Systems), 35(14), 24-29.
    45. Yong, J. Y., Ramachandaramurthy, V. K., Tan, K. M., & Mithulananthan, N. (2015). A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renewable and Sustainable Energy Reviews, 49, 365-385.
    46. Zakariazadeh, A., Jadid, S., & Siano, P. (2014). Multi-objective scheduling of electric vehicles in smart distribution system. Energy Conversion and Management, 79, 43-53.

    下載圖示 校內:2021-07-20公開
    校外:2021-07-20公開
    QR CODE