| 研究生: |
詹博翔 Chan, Po-Hsiang |
|---|---|
| 論文名稱: |
不確定系統的H∞ 類神經滑動模式複合控制器設計 The H∞ Neuro-Sliding-Mode Composite Controller Design for Uncertain Systems |
| 指導教授: |
黃正能
Hwang, Cheng-Neng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | H∞控制 、類神經網路 、滑動控制 、不確定系統 |
| 外文關鍵詞: | H∞-control, neural network, sliding control, uncertain systems |
| 相關次數: | 點閱:100 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文所提出之複合控制器主要涵蓋H∞最佳化控制、倒傳遞類神經網路補償以及滑動控制律。首先推導出一個n階誤差方程式,並藉由H∞控制理論求得其參數。將動態誤差定義成滑動面,其參數以H∞方法求得,並將滑動面設為代價方程式,藉由倒傳遞類神經網路將代價方程式最小化並補償(u_NNi )至系統。如此,儘管系統含有不確定性與外部干擾,仍可以改善追蹤性能。為保證系統追蹤輸入訊號,根據第i個滑動面(S_i )及其一階導數(S ̇_i)之乘積為負定之條件,取得滑動控制參數。此外,以飽和函數取代sign函數,以消除滑動控制中震顫的現象,確保控制力的平滑。利用圓定理分析不確定性與未模型化之系統動態,以確保閉迴路系統之強健性。最後,以一機械手臂來驗證此控制器之可行性。對於含有未模型化之不確定性的非線性系統,在模擬結果中仍可看到良好的追蹤性能,以及此控制器的實用性。
In this paper, the H∞ - control optimization, the back propagation neural compensation and the sliding mode control law form there main components of the proposed composited controller. The proposed controller is first formulated into an n-th - order error equation form, whose parameters are then selected by the H∞ - optimization problem. The sliding surface, defined from the error dynamics, whose parameters are assigned by H∞ - methodology, is then set to be the cost function which is to be minimized by the proposed compensation of back propagation neural network (u_NNi) so that the tracking performance can be improved, even if the system encountered by plant uncertainties and disturbances. To ensure the asymptotical tracking of the commend inputs, the control parameters of the sliding mode control component are obtained in such a way that the product of the i-th sliding surface (S_i) and the first derivative of the i-th sliding surface (S ̇_i) is guaranteed to be negative. Besides, to remove the chattering effect in sliding-mode control law, the sign function is replace by the saturation function in the proposed composite controller to ensure the smoothness of the proposed control methodology. To handle the unmodeled uncanceled dynamics, the circle criterion is then utilized to ensure the robustness of the closed - loop system. Finally, a robot manipulator is used to demonstrate the feasibility of the proposed H∞ neural - sliding - mode composite controller. The good tracking performance shown in the simulation results clearly reveal that the proposed control structure is practical even for those nonlinear systems with unmodeled uncertainties.
[1] C. N. Hwang, “Tracking Controller For Robot Manipulators A High Gain Perspective”, Michigan State Univ., 1986.
[2] C. N. Hwang, “Controller Synthesis for Input Output Tracking In Lure Type Uncertain Nonlinear Systems”, Texas A&M Univ., 1990.
[3] C. N. Hwang, “Synthesis Procedure for Nonlinear Systems”, Proc. Natl. Sci. Counc. ROC(A), vol. 17, no.45, pp. 279-294, 1993.
[4] C. N. Hwang, “Formulation of H2 and H∞ Optimal Control Problems – A Variation Approach”, Journal of the Chinese Institute of Engineers, vol. 16, no. 6, pp. 853-866, 1993.
[5] C. N. Hwang, “A Variation Approach to H2 and H∞ Control Problems for Linear Nonautonomous System”, Proc. Natl. Sci. Counc. ROC(A), vol. 19, no. 5, pp. 408-422, 1995.
[6] Cannon M., “Lecture notes - Nonlinear Systems”, University of Oxford, 2013.
[7] Doyle, J. C., “State-Space Solutions to Standard H2 and H∞ Control Problems”, IEEE Trans. Automatic Control, vol. 34, no. 8, pp. 831-847, Aug. 1989.
[8] J. J. E. Slotine, W. LI, "Applied Nonlinear Control", Prentice Hall, Englewood Cliffs, 1991.
[9] Jagannathan Sarangapani, “Neural Network Control of Nonlinear
Discrete-Time Systems”, Boca Raton: CRC/Taylor & Francis, 2006.
[10] K. Ogata, “ Modern Control Engineering”, Fourth Edition, Prentice Hall, 2001.
[11] Rumelhart D. E., Hinton G. E. and Williams R. J., ”Learning representations by back-propagation errors”, Nature (London), vol. 323, pp. 533-536, 1986.
[12] Xinghuo Yu, Kaynak, O., “ Sliding-Mode Control With Soft Computing: A Survey”, IEEE Trans. Ind. Electron., vol. 56, pp. 3275 - 3285, 2009.
[13] Yildiz, Y., Sabanovic, A., Abidi, K., “Sliding-Mode Neuro-Controller for Uncertain Systems”, IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1676-1685, Jun. 2007.
[14] 葉怡成,“類神經網路模式應用與實作”,儒林圖書有限公司,2003。
[15] 王振興,“類神經網路講義”,國立成功大學電機系,2013。
[16] 黃正能,“非線性系統分析講義”,國立成功大學系統系,2013。
[17] 楊憲東,“H∞-控制理論及應用講義”,國立成功大學航太系,2013。
[18] 彭宇煊,“機械臂之H∞-滑動控制設計”,國立成功大學系統系,2013。
[19] 趙全鋐,“H∞強健控制之權重函數選取-類神經網路設計法”,國立成功大學系統系,2001。
校內:2024-12-31公開