簡易檢索 / 詳目顯示

研究生: 莊瑋智
Juang, Wei-Chih
論文名稱: 應用共同空間型樣法改善EEG控制矯型手於中風病患之復健
Application of Common Spatial Pattern Method to Improve EEG-Controlled Orthotic Hands for Rehabilitation of Stroke Patients
指導教授: 朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 72
中文關鍵詞: 中風腦機介面大腦聯結共同空間型樣
外文關鍵詞: stroke, brain-computer interface, brain connectivity, common spatial pattern
相關次數: 點閱:86下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗室前人之研究致力於應用腦波控制矯型手進行中風病患之動作想像訓練,並藉著多通道訊號的離線分析,觀察訓練前後大腦重塑之現象,然而前人所採用之腦波特徵於想像事件之間的差異並不明顯,並且易受到雜訊干擾,影響特徵識別的結果。因此本研究利用空間濾波(spatial filter)的方法,找出大腦於事件想像過程中事件差異較為顯著的特徵訊號,取代以往研究所使用之特徵,提高動作想像的腦波辨識度,並引入本實驗室前人所發展的腦機介面(brain-computer-interface, BCI)控制矯型手之復健系統,以此系統對3名受測者進行長時間的動作想像訓練。將訓練過程中所擷取之多通道腦波,透過R-value分析腦波能量與動作事件的相關性,另外經由相位斜率指標(phase-slope index, PSI)分析,建立大腦連結,以此兩種指標觀察大腦重塑之現象。
    研究結果顯示,藉由共同空間型樣(common spatial pattern, CSP) 法篩選出適當的特徵訊號,受測者可以在訓練過程中逐漸提高想像成功率,並且藉由區域性的大腦重塑現象與想像成功率相互對應的結果,可以更明顯地觀察到人腦於訓練過程中,確實經由學習而產生聯結結構重塑。

    In our previous study, we applied EEG signal to control orthotic hands for imagery training of stroke patients, and then explore the reorganization of brain by offline analysis of multi-channel EEG. However, the difference of feature between events we used wasn’t obvious and was easily interfered by noise, both effected the results of identification. Hence, we finding the significant features of event-related imagery by spatial filter to replace the feature we used previously and using a brain-computer-interface (BCI) controlled robot system which has been developed in our previous study to proceed the BCI training. Three subjects recruited in this study. With multi-channel EEG recorded during the training, R-value which was employed to compute the correlation between EEG power and the motor imagery was computed and an EEG-based brain network was also constructed to explore the plasticity of brain.
    The results of this study showed that the accuracy of control has gradually increased during training with suitably selected features by common spatial pattern (CSP) method. And the regional reorganization of brain supported the accuracy of control which indicated that the brain can be plastically modified by BCI training.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第 一 章 緒論 1 1.1 研究背景 1 1.1.1 事件相關腦波 1 1.1.2 特徵擷取與腦機介面系統 2 1.2 文獻回顧 4 1.2.1 神經生理學 4 1.2.2 腦機介面與復健應用 4 1.2.3 特徵擷取與共同空間型樣 5 1.3 研究動機與目的 7 第 二 章 方法與實驗 8 2.1 實驗設計 9 2.1.1 受測者 9 2.1.2 實驗設計 9 2.1.3 實驗設備 11 2.2 事件相關腦波特徵篩選 12 2.2.1 極端值偵測 12 2.2.2 R-value分析 12 2.2.3 共同空間型樣法 13 2.2.4 線性識別分析 17 2.3 大腦聯結分析 19 2.3.1 相位斜率指標 19 2.3.2 複雜網路分析 20 2.4 腦機介面控制系統 22 2.4.1 腦機介面系統設計 22 2.4.2 游標與矯型手控制 27 2.4.3 腦機介面訓練指標 29 第 三 章 結果 31 3.1 特徵識別以及共同空間型樣 31 3.2 腦機介面系統控制成功率 36 3.3 事件相關性變化 48 3.4 大腦聯結之流出端與流入端 53 第 四 章 討論 58 4.1 動作想像控制訓練 58 4.2 腦波特徵事件相關性 62 4.3 大腦聯結變化 64 第 五 章 結論與建議 68 5.1 結論 68 5.2 建議 69 參考文獻 70

    [1] G. Pfurtscheller and F.H. Lopes da Silva, "Event-related EEG/MEG synchronization and desynchronization: basic principles." Clinical Neurophysiology, 1999. 110(11): 1842-1857.
    [2] 陳志瑋, "以mu波為基礎之大腦電腦介面之實現與強化." 國立成功大學機械工程學系博士論文, 2009.
    [3] F.M. Forster, W. Penfield, H. Jasper, L. Madow, "Focal epilipsy, Sensory precipitation and evoked cortical potentials." Electroencephalography and Clinical Neurophysiology, 1949. 1(1–4): 349-356.
    [4] G. Pfurtscheller and A. Aranibar, "Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement." Electroencephalography and Clinical Neurophysiology, 1979. 46(2): 138-146.
    [5] H. Jasper, and W. Penfield, "Electrocorticograms in man: Effect of voluntary movement upon the electrical activity of the precentral gyrus." Archiv für Psychiatrie und Nervenkrankheiten, 1949. 183(1-2): 163-174.
    [6] A. Schnitzler, S. Salenius, R. Salmelin, V. Jousmäki, R. Hari, "Involvement of Primary Motor Cortex in Motor Imagery: A Neuromagnetic Study." NeuroImage, 1997. 6(3): 201-208.
    [7] A. Kübler, F. Nijboer, J. Mellinger, T.M. Vaughan, H. Pawelzik, G. Schalk, D.J. McFarland, N. Birbaumer, J.R. Wolpaw, "Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface." Neurology, 2005. 64(10): 1775-1777.
    [8] H. Berger, "Über das Elektrenkephalogramm des Menschen." Archiv für Psychiatrie und Nervenkrankheiten, 1933. 99(1): 555-574.
    [9] 徐政煒, "應用隨機共振法強化事件相關去同步現象." 國立成功大學機械工程學系碩士論文, 2005.
    [10] J.R. Wolpaw, D.J. McFarland, G.W. Neat, C.A. Forneris, "An EEG-based brain-computer interface for cursor control." Electroencephalography and Clinical Neurophysiology, 1991. 78(3): 252-259.
    [11] J. Kalcher, D. Flotzinger, and G. Pfurtscheller. "Graz brain-computer interface: an EEG-based cursor control system." Engineering in Medicine and Biology Society. Proceedings of the 15th Annual International Conference of the IEEE. 1993.
    [12] J.R. Wolpaw and D.J. McFarland, "Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans." Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(51): 17849-17854.
    [13] B. Blankertz, G. Dornhege, M. Krauledat, K. Muller, V. Kunzmann, F. Losch, G. Curio, "The Berlin brain-computer interface: EEG-based communication without subject training." Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2006. 14(2): 147-152.
    [14] J. Müller-Gerking, G. Pfurtscheller and H. Flyvbjerg, "Designing optimal spatial filters for single-trial EEG classification in a movement task." Clinical Neurophysiology, 1999. 110(5): 787-798.
    [15] J.J. Daly and J.R. Wolpaw, "Brain–computer interfaces in neurological rehabilitation." The Lancet Neurology, 2008. 7(11): 1032-1043.
    [16] E. Buch, C. Weber, L.G. Cohen, C. Braun, M.A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. Soekadar, A. Fourkas, N. Birbaumer, "Think to Move: a Neuromagnetic Brain-Computer Interface (BCI) System for Chronic Stroke." Stroke, 2008. 39(3): 910-917.
    [17] D. Broetz, C. Braun, C. Weber, S.R. Soekadar, A. Caria, N. Birbaumer, "Combination of Brain-Computer Interface Training and Goal-Directed Physical Therapy in Chronic Stroke: A Case Report." Neurorehabilitation and Neural Repair, 2010. 24(7): 674-679.
    [18] 李阮曜, "腦機介面控制復健機械手於中風病患手部復健及功能性磁振造影評估." 國立成功大學機械工程學系碩士論文, 2011.
    [19] 詹政翰, "腦機介面控制機器人於中風病患手指復健及大腦聯結評估." 國立成功大學機械工程學系碩士論文, 2012.
    [20] Z.J. Koles, M. Lazar, and S. Zhou, "Spatial patterns underlying population differences in the background EEG." Brain Topography, 1990. 2(4): 275-284.
    [21] Z.J. Koles, "The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG." Electroencephalography and Clinical Neurophysiology, 1991. 79(6): 440-447.
    [22] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, K. R. Muller, "Optimizing Spatial filters for Robust EEG Single-Trial Analysis." Signal Processing Magazine, IEEE, 2008. 25(1): 41-56.
    [23] Blankertz, B. F. Losch, M. Krauledat, G. Dornhege, G. Curio, K. R. Muller, "The Berlin Brain--Computer Interface: Accurate Performance From First-Session in BCI-Naive Subjects." Biomedical Engineering, IEEE Transactions on, 2008. 55(10): 2452-2462.
    [24] T. Hastie, R. Tibshirani, and J. Friedman, "The elements of statistical learning : data mining, inference, and prediction." ed. s. edition. 2009.
    [25] P. Shenoy, M. Krauledat, B. Blankertz, R.P. Rao, K.R. Muller, "Towards adaptive classification for BCI." Neural Engineering, 2006. 3(1): R13-23.

    下載圖示 校內:2018-08-30公開
    校外:2018-08-30公開
    QR CODE