簡易檢索 / 詳目顯示

研究生: 陳鈺璿
Chen, Yu-Hsuan
論文名稱: 運用TCAD研究3nm FinFET的通道應力與載子遷移率對結構的敏感度
TCAD-based study of the sensitivity of 3nm FinFET channel stress and carrier mobility to structure
指導教授: 江孟學
Chiang, Meng-Hsueh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 65
中文關鍵詞: TCAD通道應力載子遷移率通道結構調變
外文關鍵詞: TCAD, Channel stress, carrier mobility, channel structure modification
相關次數: 點閱:117下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今的科技當中,晶圓製造為其中不可缺的一環,隨著半導體製程的不斷進步,尺寸的微縮成為其中的主流,隨之而來的各種負面效應促使我們尋找改善的方法,而鰭式場效應電晶體也因為克服了短通道效應成為目前先進技術的首選,但是技術節點的持續微縮使得鰭式結構的通道也逐漸再度遭遇短通道效應的困擾,因此在不改變鰭式通道的前提下,改善電晶體電性成為我們的目標。
    在本篇論文中,我們利用TCAD建構出鰭式場效應電晶體的模型,參考國際設備和系統路線圖(IRDS)所提供的2020年版3奈米節點尺寸作為基準,並藉由改變電晶體的材料及細微結構來改善通道中的壓力變化,再進一步的觀察其遷移率和Gm的變化,進而達到改善元件的目的。
    本實驗主要測量方法為建構不同的模型,如:電晶體通道中的矽鍺比例、鰭式通道的頂部及底部的寬度變化、通道的高度、Fin Pitch和Gate Pitch。再透過TCAD去分析材料與結構改變的遷移率變化,並找出符合技術節點的最佳化模型。

    In today's technology, wafer fabrication is one of the indispensable parts. With the continuous advancement of the semiconductor process, size shrinkage has become one of the mainstreams, and the consequent negative effects have prompted us to look for ways to improve it. Therefore, it is our goal to improve the transistor electrical properties without changing the finned channels.
    In this thesis, we use TCAD to construct a model of the Fin Field-Effect Transistor and use the 2020 version of the 3 nm technology node provided by the International Roadmap for Devices and Systems (IRDS) as a benchmark and improve the pressure variation in the channel by changing the material and fine structure of the transistor, and then observe the variation of the mobility and Gm to improve the component.
    The main measurement method of this experiment is to construct different models, such as the ratio of silicon germanium in the transistor channel, the width changes of the top and bottom of the channel, the height of the channel, Fin Pitch, and Gate Pitch. Then analyze the mobility changes by changing the material and structure through TCAD and find the optimal model that meets the technical nodes.

    摘要 i Abstract ii 致謝 iii Contents iv Table Captions vi Figure Captions vii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Planar MOSFET and FinFET 2 1.3 Stress and Mobility 3 1.3.1 Strained-Silicon Channel Technology 3 1.3.2 SiGe epitaxy source/drain 4 1.3.3 Surface scattering 5 1.4 Structure of Fin 6 1.5 Overview of the Thesis 7 Chapter 2 Model of 3nm FinFET 8 2.1 Device structure 8 2.2 SProcess simulation flow 10 2.3 Simulation method 12 2.3.1 SDevice model 12 2.3.2 Calculation method in Inspect 14 2.4 Electrical characteristics 16 2.5 Distribution profiles of mobility and stress 17 Chapter 3 Sensitivity of Structural Modifications to FinFET at 3 nm Technology Node 21 3.1 Modulation of Channel shape 21 3.2 Modulation of Fin Height 30 3.3 Modulation of Gate pitch 39 3.4 Modulation of Fin Pitch 46 3.5 Modulation of Gate Height Over Fin 54 3.6 The relationship between stress and mobility 56 Chapter 4 Through Process Trade-Offs to Achieve Gm Improvement 57 4.1 Modulation of Wtop/Wbot and Gate Pitch 57 4.2 Modulation of Wtop/Wbot and Fin Pitch 58 4.3 Modulation of Fin Pitch and Gate Pitch 60 4.4 Modulation of Fin Height and Wtop/Wbot 61 Chapter 5 Conclusion 63 References 64

    [1] Present, "Cramming more components onto integrated circuits" Readings in computer architecture, vol. 56, 2000.
    [2] D. Bhattacharya and N. K. Jha, "FinFETs: From devices to architectures", Adv. Electron., vol. 2014, pp. 1-21, Sep. 2014.
    [3] K. J. Kuhn, "CMOS scaling for the 22nm node and beyond: Device physics and technology" in VLSI Technology, Systems and Applications (VLSI-TSA), 2011 International Symposium on, 2011, pp. 1-2: IEEE.
    [4] M. Ieong, B. Doris, J. Kedzierski, K. Rim, and M. Yang, "Silicon device scaling to the sub-10-nm regime," Science, vol. 306, no. 5704, pp. 2057-2060, 2004.
    [5] K. Kim, R. Kanj, and R. V. Joshi, "Impact of FinFET technology for power gating in nano-scale design," Fifteenth Int. Symp. Qual. Electron. Des., pp. 543-547, Mar. 2014.
    [6] S. Chabukswar, D. Maji, C. R. Manoj, K. G. Anil, V. R. Rao, F. Crupi, P. Magnone, G. Giusi, C. Pace, and N. Collaert, "Implications of fin width scaling on variability and reliability of high-k metal gate FinFETs," Microelectron. Eng., vol. 87, no. 10, pp. 1963-1967, Oct. 2010.
    [7] J. Kawa, "FinFET Design Manufacturability and Reliability" in Design Ware Technical Bulletin-Q1, Synopsys, Inc., 2013.
    [8] E. J. Nowak et al., "Turning silicon on its edge [double gate CMOS/FinFET technology]," IEEE Circuits and Devices Magazine, vol. 20, no. 1, pp. 20-31, 2004.
    [9] M. Reiche et al., "Strained Silicon Devices” Solid State Phenomena Vols. 156-158 (2010) pp 61-68.
    [10] Guangyu Sun, "Strain effects on hole mobility of Silicon and Germanium P-type metal oxide semiconductor field effect transistors", Ph.D. Dissertation University of Florida, 2007.
    [11] C. Yang et al., “A Mobility Stress Response Model of FinFET: Silicon vs Germanium” IEEE Silicon Nanoelectronics Workshop, 13-14 June 2020.
    [12] D. Lu et al., "Silicon Germanium FinFET Device Physics Process Integration and Modeling Considerations", ECS Transactions, vol. 64, pp. 337-345, 2014.
    [13] Three-Dimensional Simulations of 7 nm Silicon Germanium FinFETs Using Monte Carlo Model and Drift-Diffusion Model With Ballistic Mobility From TCAD Sentaurus Version N-2017.09 Installation, Synopsys, Mountain View, CA, USA, 2017.
    [14] F. D’Agostino and D. Quercia, "Short-channel effects in MOSFETs," Introduction to VLSI design (EECS 467), 2000.
    [15] G.L. Wang. “Investigation on SiGe Selective Epitaxy for Source and Drain Engineering in 22 nm CMOS Technology Node and Beyond” (Springer, Singapore, 2019)
    [16] G. Wang et al., "Integration of highly-strained SiGe materials in 14nm and beyond nodes FinFET technology", Solid-State Electronics, vol. 103, pp. 222-228, 2015.
    [17] V. Mishra et al., “Comparison of multiple fin heights for increasing drain current in N-FinFET” International conference on Circuits, Controls and Communications, 27-28 Dec. 2013.
    [18] X. He et al., "Impact of Aggressive Fin Width Scaling on FinFET Device Characteristics", 2017 IEDM Tech. Dig., pp. 493-496, 2017.
    [19] W. K. Yeh, W. Zhang, C. H. Shih and Y. L. Yang, "Effects of fin width on performance and reliability for N-and P-type FinFETs", 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 361-364, 2016.
    [20] T. Miyashita et al.,”Selective Fin Trimming after Dummy Gate Removal as the Local Fin Width Scaling Approach for N5 and Beyond” IEEE International Electron Devices Meeting, 1-5 Dec. 2018, San Francisco, CA, USA.
    [21] Zhang, M.; Guo, Y.; Chen, J.; Zhang, J.; Tong, Y. “Simulation investigation of the diffusion enhancement effects in FinFET with graded fin width.” IEEE Trans. Nanotech. 2019, 18, 700–703.
    [22] K. P. Pradhan, S. K. Saha, P. K. Sahu, and Priyanka, “Impact of fin height and fin angle variation on the performance matrix of Hybrid FinFETs,” IEEE Trans. Electron Devices, vol. 64, no. 1, pp. 2738–2744, Jan. 2017, doi: 10.1109/TED.2016.2631301.
    [23] S. W. M. Hatta, N. Soin, S. H. A. Rahman, Y. A. Wahab and H. Hussin, "Effects of the fin width variation on the performance of 16 nm FinFETs with round fin corners and tapered fin shape", Proc. IEEE-ICSE, pp. 533-536, Aug. 2014.
    [24] INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS™ 2020 UPDATE
    [25] J Jena et al., ”Performance Analysis of FinFETs with Strained-Si Fin on Strain-Relaxed Buffer” IEEE VLSI DEVICE CIRCUIT AND SYSTEM, 18-19 July 2020, Kolkata, India.
    [26] Synopsys. (March 2016). Sentaurus Process UserGuide. Available: http://www.synopsys.com/TOOLs/TCAD
    [27] Integration of the Density Gradient Model into a General Purpose Device Simulator
    [28] Synopsys. (March 2016). Sentaurus Device UserGuide. Available: http://www.synopsys.com/TOOLs/TCAD
    [29] D. Caughey and R. Thomas, "Carrier Mobilities in Silicon Empirically Related to Doping and Field," Proc.IEEE, vol. 52, pp. 2192-2193, 1967.
    [30] T. Ayalew, “SiC semiconductor devices technology modeling and simulation,” Jan. 2004.
    [31] S. Takagi et al., "Carrier-transport-enhanced channel CMOS for improved power consumption and performance", IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 21-39, Jan. 2008.

    下載圖示 校內:2024-07-30公開
    校外:2024-07-30公開
    QR CODE