| 研究生: |
林柏川 Lin, Bo-Chuan |
|---|---|
| 論文名稱: |
氣閥系統應用於超音速流場特性觀察 Observation of Air Throttling in Supersonic Flow |
| 指導教授: |
袁曉峰
Yuan, Tony |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 超音速燃燒衝壓引擎 、氣閥點火系統 、震波邊界層交互作用 |
| 外文關鍵詞: | Air throttling, Supersonic cavity flow, Boundary layer separation, Shock train |
| 相關次數: | 點閱:110 下載:28 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於氣流停留在超音速燃燒衝壓引擎燃燒室之時間極短,對於燃燒室點火過程有極大的挑戰,是以嘗試採用氣閥(Air throttling)系統,在燃燒室之點火階段予以輔助,藉此增加點火成功率。本實驗以視流紋影法搭配壁面靜壓量測,觀察凹槽形式之超音速流場中的凹槽面氣閥噴注與平板面氣閥噴注之流場變化情況。從影像上可以發現,當氣閥噴注增強時,邊界層及剪切層之分離情形也隨之增加,而從壁面壓力數值可知氣閥噴注確實可造成噴注上游壁面壓力上升,並且隨著氣閥噴注強度增加,壓力上升之數值與影響範圍皆有所成長。比較凹槽面與平板面不同邊界層狀況受氣閥噴注之影響,可發現凹槽面受影響程度較高。最後透過影像觀察與實際量測到之增壓現象,可解釋氣閥噴注使流場壓力上升之根本原因為邊界層分離。
An experimental investigation of air throttling applied in supersonic cavity flow has been conducted. Different air throttling momentum flux has been used to realize the interaction between air throttling and supersonic cavity flow qualitatively. Cavity side air throttling injection and plate side air throttling injection has also been investigated. High-speed schlieren photography are implemented to explore boundary layer separation and shock system in transient and steady state. Wall pressure measurement along the test section is also used to help understanding pressure distribution in time and spatially. The higher air throttling momentum will get more intensive boundary layer separation, and thus get higher wall pressure increment. When the separation region height overtook throttling penetration height, a supersonic-diffuser-type flow pattern occurred, which caused wall pressure increased dramatically. Through transient observation, boundary layer separation is the main reason which lead to new shock system, and the shock propagation upstream is due to boundary layer separation region extending.
[1] Jian Li, Fuhua Ma, and Vigor Yang, “A Comprehensive Study of Ignition Transient in an Ethylene-Fueled Scramjet Combustor”, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 8 - 11 July 2007
[2] G.Ben-Dor, “Shock Wave Reflection Phenomena”, Springer, page 4, 2007.
[3] M. S. IVANOV, S. F. GIMELSHEIN AND G. N. MARKELOV, “Statistical Simulation of the Transition between Regular and Mach Reflection in Steady Flows”, Computers Math. Applic. Vol. 35, No. 1/2, pp. 113-125, 1998
[4] Jean Délery · Jean-Paul Dussauge, “Some physical aspects of shock wave/boundary layer interactions”, Shock Waves (2009) 19:453–468, 2009
[5] Bruce F. Carroll, J. Craig Dutton, “Characteristics of Multiple Shock Wave/Turbulent Boundary-Layer Interactions in Rectangular Ducts”, Journal of Propulsion and Power, Vol.6,No.2. 1990
[6] Dimitri Papamoschou, Andreas Zill, Andrew Johnson, “Supersonic flow separation in planar nozzles”, Shock waves, Vol.19, 171-183, 2008
[7] Richard I. Paek, “Back-pressure Effect on Shock-Train Location in a Scramjet Engine Isolator”, AFIT Scholar, Theses and Dissertations. 2048, 2010.
[8] Wang Chengpeng, Xue Longsheng, Tian Xuang, “Experimental characteristics of oblique shock train upstream propagation”, Chinese Journal of Aeronautics, Volume 30, Issue 2, Pages 663-676, April 2017.
[9] S. B.Verma, Vijay Gupta, “Supersonic Separation with Obstructions”, AIAA JOURNAL, Vol 34, No.4, 1996
[10] Thomas Knast, Lee Mears, Nishal Arora, Tufan Kumar Guha, Rajan Kumar, Farrukh Alvi, Damon R. Honnery, Daniel Edgington-Mitchell, “The Effect of Jet Exit Pressure Ratio on a Jet in Cross Flow”, AIAA AVIATION Forum, 2018 Fluid Dynamics Conference, 2018
[11] Vigor Yang , Jian Li , and Jeong Yeol Choi, Kuo-Cheng Lin, “Ignition Transient in an Ethylene Fueled Scramjet Engine with Air Throttling Part I: Non-Reacting flow Development and Mixing”, AIAA 2010-409, 2010.
[12] 紀翔閎、張雅筑、林宥騰、張維軒、劉家鈴、林柏川、沈煒智、袁曉峰,連管風洞之馬赫 2 流場校驗,AASRC Conference, 14-01, 2020.
[13]G.S.Settles, “SCHLIEREN AND SHADOWGRAPH TECHNIQUE”, Springer, page 42, 2001.