| 研究生: |
郭怡君 Kuo, Yi-Chun |
|---|---|
| 論文名稱: |
永續環境評估系統(SBTOOL2008)運用於台灣綠建築案例之比較探討-兼以「採光與照明」第二層評估項目作個案實證分析 A Study on Applying the SBTOOL2008 Performance of Green Building Case study in Taiwan - the empirical analysis of the second assessment group for “Daylight and Illumination” |
| 指導教授: |
蔡耀賢
Tsay, Yaw-Shyan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 永續建築 、綠建築 、SBTOOL 、EEWH 、BIPV |
| 外文關鍵詞: | Sustainable building, Green building, SBTOOL, EEWH, BIPV |
| 相關次數: | 點閱:167 下載:30 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自1998年以來,永續建築國際會議World Sustainable Building Conference每3年舉行1次,每次的會議中皆開設‘專案議程’及‘地區議題’,以探討世界各國對各種建築類型之永續性能評價結果與著重發展項目;其目的是為了交流各國運用永續、綠建築評估工具所呈現的地區性建築環境特色,讓彼此藉以瞭解各地區發展特色建築時,與國際永續環境脈動之關聯性與扮演角色。
本研究運用永續建築國際會議推廣之永續建築評估工具SBTOOL 2008(Sustainable Building Assessment Tool)為研究工具,邀請國內相關永續環境、綠建築發展等分地區(台灣北區及南區)與分領域(產、官、學)專家,以考量台灣地區的環境、社會、經濟特性填寫專家問卷,透過層級層序分析法(Analytic Hierarchy Process,AHP)的一致性檢定,篩選有效問卷,再透過「各分群組內(分地區與分領域)」進行Kolmogorov-Smirnov適合度檢定與集中趨勢之判定,檢視專家學者對每一項評估指標群之看法是否具一致性。本研究擇選10個取得台灣綠建築標章(合格級以上)的住宅建成案例,比對分析SBTOOL 2008永續建築與台灣綠建築標章(Ecology、Energy Saving、Waste Reduction、Health, EEWH)評估結果,輔以迴歸分析法、點二分析法、等級相關分析法,探討在不同建築物影響變數下,如:總樓地板面積、建築物形態(連棟及獨棟)、樓層數等,對於評估結果的影響性及解釋力。最後,以SBTOOL 2008「室內環境品質」指標群之‘採光與照明’第二層評估項目為案例檢測模擬驗證項目,分析某辦公類建築採用太陽能光電為建築材料(Building-integrated photovoltaic,BIPV)時,室內的採光與照明對於盆栽植物生長之影響,希冀提供國內發展永續環境、智慧綠建築之研究參考。
本研究可歸納以下結論:
1.以南北區優先決策評估指標群:南部專家與北部專家皆以「環境負荷」為第一優先決策評估指標群,南部專家的權重值為0.197;北部專家的權重值則為0.215。
2.產、官、學領域專家建議優先決策評估指標群:公部門及學術研究領域以「環境負荷」為第一優先決策評估指標群,公部門專家的權重值為0.209,學術研究專家的權重值為0.226;而建築產業領域專家則以「文化與感知面」為第一優先決策評估指標群,其調查權重值為0.334。
顯示國內專家普遍認為由於國內能源有90%仰賴進口,因此,對於節能、再生能源與材料資源使用實為重視,其次,產業領域專家則認為建築物與基地周遭環境的協調性、突顯當地文化特性、歷史建築的保存等,是國家發展永續環境時,應重視之課題。
3.從案例評估得分分級來看,發現EEWH案例評估結果比對SBTOOL2008皆呈現 ‘合格級以上’的得分分級,此結果顯示:如若住宅建築獲得台灣綠建築標章合格級以上,則該案在SBTOOL2008評估結果則易呈現‘合格級’得分;然而,為取得SBTOOL2008之高分評估結果,則須視該評估案例對於SBTOOL2008評估項目之完整性落實而定。
4.以「總樓地板面積」(5,000m2以上)為研究變數,其顯著性p值呈現0.124的相關性(p≦0.1,達應用科學之要求之顯著水準),並且R2迴歸變異量有48.6﹪的解釋力(超過社會科學要求之R2>3%);顯示綠建築案例在總樓地板面積5,000m2以上是可以提升永續建築環境性能評估結果。
5.以建築物型態(連棟、獨棟)為研究變數,分析該變因對於SBTOOL 2008與EEWH案例評估結果之影響性,檢定結果呈現:建築物型態對於提升綠建築得分是沒有影響的(呈現負相關),但對於永續建築得分則是有影響(呈現正相關性)。
6. 以建築物樓層數6層樓以下及以上為分緯,建築物在6層樓以下在EEWH及SBTOOL 2008的「綠建築面向」呈現顯著的相關性(達顯著水準0.05),而建築物在6層樓以上對應於EEWH,則呈現負相關。即意謂6層樓以上之建築物型態對EEWH及SBTOOL 2008評估結果是無相關性,6層樓以下之建築物型態對EEWH及SBTOOL 2008評估結果是有相關性。
7.以「採光與照明」第二層評估項目為案例檢測模擬項目,分析太陽能光電材料對室內盆栽植物生長之影響,其結果顯示:隨著透光板透光率增加,室內照度平均值也會隨之增加,均勻度則會隨之衰減;考量室內盆栽植物生長之照度基準值應不可低於1000 lx,因此,建議以透光率0.4的透光板,可使其室內平均照度值與均勻度達到最佳化的結果。
8.若以考量室內盆栽植物之生長,建議應調整EEWH“玻璃透光性”原評估內容,改為鼓勵使用透光性佳的玻璃;而EEWH“自然採光空間深度比”(主要空間數目與全部空間數目之比值)及SBTOOL 2008“空間照明計畫”評估內容,則由於本案例自規劃設計階段至使用維護階段皆有提出完整的照明計畫書,因此,不論在SBTOOL 2008或EEWH之「室內光環境」評估指標群都呈現高分狀態。
Since 1998, the World Sustainable Building Conference has been discussing current topics and regional issues to look into various assessment tools of building environmental performance applied in case studies. It aims to share the development of assessment tools and the results of evaluation cases with international communities, hoping it would encourage a better understanding of the relationship between regional buildings and the changes in sustainable environment around the globe, and what important roles these regions play.
This study used the SBTOOL 2008, which is recommended by World Sustainable Building Conference, as a research tool, and changed it to a sustainable building environmental performance model that is appropriate for Taiwanese economics, society and regional development. By using regression analysis, Point-biserial correlation coefficient and Spearman rank order correlation coefficient, we analyzed the correlation of the evaluation results of the EEWH system and the international SBTOOL 2008 system. We investigated the effects of different variables of residential building designs (e.g. total floor area, single or connected building, number of stores) on the evaluation results of green building system and sustainable building system. Finally, taking into account of the increasing shortage of crop supply due to global climate changes, this study took growth of potted plant in office, as a case study, to analyze the results of simulation when photoelectric materials are used, and what effects these have on the “Daylight and Illumination” evaluation category standards and contents within the green building system and the sustainable building system. We hope this study provides valuable information to the development of sustainable environment and green building in Taiwan. Our major findings were as below:
1. Most weighted issue as suggested by Northern and Southern Experts: both the Northern and Southern expert put “Environmental Loading” as their most important issue. The weight given by the Southern Expert is 0.197; the weight given by the Northern expert is 0.215.
2. Most weighted issue as suggested by experts from academia, government and industry: governmental and academic research experts put “Environmental Loading” as their most important issue. The weight given by the governmental expert is 0.209; the weight given by the academic expert is 0.226. Experts from the architectural industry put “Culture and Perceptual Aspects” as their most important issue, with a weight of 0.334. These results indicate that the Taiwanese experts realize that 90% of the energy in Taiwan relies on imports. Hence, the main focus should be on energy conservation, and renewable energy and resource. It is also important to preserve features of regional buildings, which requires emphasis on the harmony between the building and its surrounding environment, cultural value and building conservation, as suggested by industrial experts.
3. From the distribution of the rank score of the sample evaluation score, the study found that the samples from the EEWH all obtained acceptable performance or above in SBTOOL 2008 assessment. Hence the study predicts that, if a case that obtained certified level or above in EEWH, it also tends to obtain acceptable performance or above in SBTOOL 2008. However, if a sample is to obtain a good result in SBTOOL 2008, then it depends on how thoroughly the sample complies with sustainability.
4. By looking at the effects of total floor area (larger than 5,000m2) on the evaluation results, the level of significance is 0.124 (statistically significant). The R2 explains 48.6% of the variability. The results show that green buildings with floor areas larger than 5,000m2 increases the evaluation scoring in the sustainable building system.
5. By looking at the effects of a building being single or connected on the evaluation results, a building being connected has no effect on the evaluation results in the green building system (negative correlation), whereas there are some effects in the sustainable building system (positive correlation).
6. By looking at the effects of a building with six storey or fewer, there is a statistical significance in the scoring of green building system (p-value <0.05), whereas buildings with more than six storey do not have much effects on the evaluation results (negative correlation).
7. We used “Daylight and Illumination” as the category to analyze application of photoelectric materials in greenhouses. The results of the simulation test shows that, as transmittance of translucent panel increases, the corresponding indoor average illuminance also increases, whereas the uniformity decreases. Taking into consideration that the greenhouse illumination standard must not be lower than 1000 lx, the photoelectric material modules of this experiment found that translucent panel with transmittance of 0.4 achieves the optimum indoor average illuminance and uniformity.
8. Considerations of growth of potted plant in office, the evaluation standards and contents of the indoor light environment should be changed. The category “glass translucency” should be changed to encourage the use of glass or other materials with good translucency. There are also the “natural lighting span-to-depth ratio” (number of main spaces and number of total spaces ratio) and the “lighting performance rating” categories in the SBTOOL 2008. Because of the functional requirements of this case, they are built with emphasis on lighting and illumination with detailed plans during the design phase. Hence, this case would score higher in the “indoor light environment” category.
中文文獻
1.內政部,「智慧綠建築推動方案(核定本)」,2010年。
2.內政部營建署,建築技術規則,2011年。
3.內政部建築研究所,「綠建築解說與評估手冊」,2008年。
4.內政部建築研究所,「綠建築解說與評估手冊2011版」,2011年。
5.內政部建築研究所,「智慧建築解說與評估手冊2011年版」,2011年。
6.江哲銘,「永續建築導論」,建築情報,2004年。
7.江哲銘、張桂鳳、廖惠燕、楊逸詠、周伯丞,「設計品質指標運用於新建住宅室內環境空間性能評價之案例研究」,中華民國建築學會建築學報第57期,2006年。
8.何明錦,「我國智慧綠建築研究成果與運用」,政策交流道雜誌,2013年。
9.何友峰、李融昇,「都市設計永續價值評估指標體系之研究」,中華民國建築學會建築學報第68期,2009年。
10.李永展、林士監、黃慶銘,「台北市永續發展指數之建構及應用」,中華民國建築學會建築學報第65期,2008年。
11.李淑娟,「建築空間環境綠化對都市不動產市場影響之研究」,國立屏東商業技術學院不動產經營系(所) 碩士論文,2008年。
12.李卓偉,「統計學(上)」,智勝文化事業有限公司,2000年。
13.邱皓政,「量化研究與統計分析」,五南圖書出版有限公司,2008年。
14.林憲德,「建築計畫用氣象資料集成」,經濟部能委會,1998年。
15.林建憲、戴維倫、賴杰隆、周大鑫、趙念慈、張明文,「晝光節能照明設計之研究」,機械工業雜誌,2008年。
16.林沂品,「具自體通風效果太陽光電建築構造(Ventilated BIPV)之通風與節能效益分析」,國立成功大學建築研究所博士論文,2009年。
17.許宗熙、陳邁、楊逸詠,「智慧型建築指標與基準」,內政部建築研究所研究成果,1992年。
18.郭信霖、許淑卿,「初等統計學」,華立圖書股份有限公司,2005年。
19.陳國彥,「溫濕度圖與柯本氣候分類」,師大學報第二十九期,1984年。
20.陳順宇,「多變量分析四版 」,華泰文化事業股份有限公司,2005年。
21.陳順宇,「迴歸分析」,三民書局,2009年。
22.陳奎邑,「SBTOOL運用於台灣社區環境評估系統建構之研究」,國立成功大學建築研究所碩士論文,2009年。
23.張桂鳳、江哲銘、周伯丞,「永續建築評估工具GBTool2005本土適用性之研究」,中華民國建築學會建築學報第60 期,2007年。
24.張桂鳳,「永續環境評估系統運用於台灣地區建築物性能評價之研究」,國立成功大學建築研究所博士論文,2005年。
25.張效通,「綠建築規劃設計理念」,智慧綠建築宣導培訓教材,2012年。
26.歐文生、何明錦、陳瑞鈴、陳建富、羅時麒,「台灣太陽能設計用標準日射量之研究」,中華民國建築學會建築學報第64 期,2008年。
27.廖怜雅,「台灣地區應用SBTOOL評估之適用性-以EEWH合格級以上住宅為例」,國立成功大學建築研究所碩士論文,2008年
28.謝玉玲、賴榮平、謝育穎,「文化展演設施建築需求評估指標之研究」,中華民國建築學會建築學報第58期,2006年。
英文文獻
Aczel, J.; Satty T.L.; 1983, Procedures for synthesizing ratio judgments,Journal of Mathematical Psychology, Vol.27:93-102.
Basak, I.; Satty T.L.; 1993, Group decision making using the analytic hierarchy process, Journal of Business Ethics, Vol. 17, 1197-1204.
Beetstra F.; 1997, Beyond LCA: Building related environmental decisions, Proceedings of CIB TG8 Second International Conference on Buildings and Environment, France, Vol. 2, 565.
Carson, Rachel.; Silent Spring, 1962, published by Houghton Mifflin.
Cole, Raymond J.; 1998, Emerging Trends in Building Environmental Assessment Methods, BUILDING RESEARCH & INFORMATION, Vol. 26, 26(1).
Cole, Raymond J.; 1999, Building Environmental Assessment Methods:clarifying intentions, BUILDING RESEARCH & INFORMATION, Vol. 27 (4/5).
Cole, Raymond J.; 2004, Changing context for environmental knowledge, BUILDING RESEARCH &INFORMATION, Vol. 32, 91-109.
Chang, K.F.; Chou, P.C.; Chiang, C.M.; Chen, I.C., 2005, The Revised Version of the GB-tool for Subtropical Taiwan –from the barrier to Success, “SB05Tokyo”, The 2005 World,Sustainable Building Conference in Tokyo, 1792-1797.
Causin H.F.; Jauregui R.N.; Barneix A.J.; 2006, The effect of light spectral quality on leaf senescence and oxidative stress in wheat. Plant Science, Vol. 171, 24-33.
Causin H.F.; Jauregui R.N.; Barneix A.J.; 2006, The effect of light spectral quality on leaf senescence and oxidative stress in wheat, Plant Science, Vol.171,24-33.
Chang, K.F.; Chiang,C.M.; Chou, P.C.; 2007, Adapting aspects of GBTool 2005-searching for suitability in Taiwan, Building and Environment, Vol. 42, 310–316.
Chang, K.F.; Chou, P.C.; Chiang, C.M.; 2008, Exploring the Relevance of Regionalism to the Sustainable Building Assessment Model in Taiwan: through GBTool2005 Version, The Open Construction and Building Technology Journal, Vol. 2, 185-201.
Ewelina Kaatz , David S. Root , Paul A. Bowen; Richard C. Hill; 2006, Advancing Key Outcomes of Sustainability Building Assessment, BUILDING RESEARCH & INFORMATION ,Vol. 34(4), 308–320.
Francis Galton; 1885, Regression Toward Mediocrity in Heredity Stature, Journal of Anthropological Institute, Vol.15, 246-263.
Francis Galton; 1885, Regression Toward Mediocrity in Heredity Stature, Journal of Anthropological Institute, Vol.15, 246-263.
Fowler, K.M.; Rauch, E.M.; 2006, Sustainable Building Rating Systems Summary, Completed by the Pacific Northwest National Laboratory, operated for the U.S. Department of Energy by Battelle.
Gilbert A. Churchill, Jr.; Paul Peter, J. 1984, Research Design Effects on the Reliability of Rating Scales: A Meta-Analysis, Journal of Marketing Research, Vol. XXI, 360-375.
ISO- International Organization for Standardization, ISO 14020 (2000), Environmental labels and declarations -- General principles.
ISO- International Organization for Standardization, ISO 14000 (2004), Environmental management.
ISO- International Organization for Standardization, ISO/TS 21929-1(2006), Sustainability in building construction - Sustainability indicators - Part 1: Framework for development of indicators for buildings.
ISO- International Organization for Standardization, ISO/TS 21931-1(2006), Sustainability in building construction - Framework for methods of assessment for environmental performance of construction works - Part 1: Buildings.
ISO- International Organization for Standardization, ISO/DIS 21930 (2007), Sustainability in building construction - Environmental declaration of building products.
Kuo, Y.C., Chiang, C.M., Chang, K.F., 2011, A Study on the Relevance between the Green Buildings in Taiwan and the Assessment Results of SBTOOL, Journal of Applied Mechanics and Material, Vol. 71-78, 2778-2782.
Kuo, Y.C.; Chiang, C.M. ; Chou, P.C. ;Chen, H. J.; Lee, C. Y.; Chan, C. C., 2012, Applications of Building Integrated Photovoltaic Modules in a Greenhouse of Northern Taiwan, “Journal of Biobased Materials and Bioenergy”, Vol. 6, 1–7.
Lasson, Nills; 1999, Development of a building performance rating and labeling system In Canada,Building Research & Information , Vol.27(/5), 332-341
Lützkendorf, Thomas.; Lorenz, David.; 2005, Sustainable property investment: valuing sustainable buildings through property performance assessment, BUILDING RESEARCH & INFORMATION , Vol. 33, 212-234.
Lützkendorf, Thomas.; Lorenz, David.; 2006,Using An Integrated Performance Approach in Building Assessment Tools, BUILDING RESEARCH & INFORMATION, Vol. 34(4), 334 -356.
Lasson, Nills; 2006, An Overview of the GBC Method and SBTOOL, published by iiSBE:4.
Lee, W.L.; Burnett, J.; 2006, Customization of GBTool in Hong Kong, Building and Environment, Vol. 41, 1831–1846.
Lasson, Nills; 2007, Rating Systems and SBTOOL, published by iiSBE.
Ott, Wayne R., 1978, Environmental Indices: Theory and Practice, published by Ann Arbor, Mich. Ann Arbor Sciences.
Satty, T.L, Erdener, E., 1971, A new approach to performance measurement the analytic hierarchy process, Design Methods and Theories, Vol. 13(2), 62-68.
Satty, T.L., 2000, Fundamentals if Decision Making and Priority Theory with the Analytic Hierarchy Process, Pittsburg: RWS Publications.
Turner, Whitted. 1980, An Improved Illumination Model for Shaded Display, Communications of the ACM, Vol.23,343-349.
日文文獻
小野寬也、村上周三、佐藤正章,2004,AHP法による「CASBEE:新築」の評価項目の重み係數の算定(その2)アンケート結果の回答者屬性別の分析と整合性の檢討,日本空氣.調和衛生工學會大會演講論文集