| 研究生: |
羅珮瑄 Lo, Pei-Hsuan |
|---|---|
| 論文名稱: |
管道構型對微混合器的影響 The effect of geometry on mixing efficiency in a micromixer |
| 指導教授: |
李定智
Li, Denz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 三維交錯微管道 、深寬比 |
| 外文關鍵詞: | 3-D crossing microchannel, aspect ratio |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三維交錯微管道具有許多應用的可能,例如流體轉換、混合等。此論文主要目的為延續前人的研究,詳細探討管道之不同參數(參數包括角度、深寬比、l參數)對微混合器混合功能的影響,並找出最佳參數組合,使混合效能提高。
本研究利用CFD-RC 數值模擬軟體來確認此三維結構中的流場與混合特性,再以墨水、螢光染劑、螢光顆粒進行實驗,比對數值模擬結果與實驗結果是否有一致性。實驗的後處理方法是使用ImageJ 影像處理軟體對螢光顆粒計數及染料光強度的結果進行分析,得知混合效能的好壞。相信經過這些參數測試後,能對相關元件中的流體控制特性提供一些有用的參考。
結果顯示,角度90度、l參數為25 μm、深寬比第一到第四截面為0.4的混合器具備了分離合併(SAR)的多層板流與混沌的混合機制,展現了相當優異的混合效能,未來具有流體輸送、控制、混合應用的可能。
Three-dimensional crossing microchannel can be applied in many ways, such as liquid switching and mixing. To extend previous studies, this thesis investigates the effects of different parameters―angles, aspect ratio, and l parameter on the efficiency of micromixer. Attempts have been made to find out the optimized combination of parameters so as to enhance the mixing efficiency.
This thesis utilized CFD-RC simulation software to calculate the flow and mixing characteristics―followed by experiments using ink dye and fluorescent dye to examine the consistency between the results of the simulation and experiments. The post-processing software ImageJ was used to analyze particle counting and light intensity so as to quantify the mixing efficiency. This thesis aims to provide useful guidelines for the control of flow in microfluidic after the comprehensive investigation of these parameters.
As the results showed, microchannel with the crossing angle of 90 degrees, l parameter equal to 25 μm, and aspect ratio of 0.4 enhanced mixing efficiency significantly. In this regard, microchannel with 3-D crossing structure features a simple but robust mixing device.
1. M.S. Talary, J.P.H. Burt and P. Pethig, “Future trends in diagnosis using laboratory-on-a-chip technologies”, Parasitology, 117, 191-203, 1998.
2. L.W. van H. Nicole, V. Oscar, M.M.L. van H. Adele, J.K. Esther, P. Ad, A. Aharoni, J. van T. Arjen, K. Jaap, “The application of DNA microarrays in gene expression analysis”, Journal of Biotechnology, 78, 271-280, 2000.
3. F. Vinet, P. Chaton, Y. Fouillet, “Microarrays and microfluidic devices: miniaturized systems for biological analysis”, Microelectronic Engineering, 61-62, 41-47, 2002.
4. H.A. Stone, A.D. Stroock and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a Lab-on-a-chip”, Annual Review of Fluid Mechanics, 36, 381-411, 2004.
5. J.P..Brody, P. Yager, R.E. Goldstein, and.R.H. Austin, “Biotechnology at low Reynolds numbers”, Biophysical Journal, 71, 3430-3441, 1996.
6. C. Yang and D. Li, “Electrokinetic effects on pressure-driven liquid fows in rectangular microchannels”, Colloid and Interface Science, 194, 95-107, 1997.
7. N. Schwesinger, T. Frank, and H. Wurmus, “A modular microfluid system with an integrated micromixer” , J. Micromech. Microengr. 6, 99-102, 1996
8. A.D. Strook, K.W. Stephan Dertinger, Armand Ajdari, Igor Mezic, “Chaotic mixer for microchannel”, Science , 647-651, 2002
9. R.H. Liu, M.A. Stremler, K.V. Sharp, M.G. Olsen, J.G. Santiago , R.J Adrian, and H. Aref , “Passive mixing in a three-dimensional serpentine microchannel”, J. Microelectromech. Syst., 9, 190-197, 2000.
10. 陳佑慈,「三維交錯微管道流場分析與應用」, 國立成功大學航空太空工程研究所博士論文,民國98年7月。
11. D. Lee and Y.T. Chen, ”Mixing in tangentially crossing micro-channels”, AIChE J., DOI 10.1002/aic.12299, 2010.
12. V. Hessel, H. Lowe, and F. Schonfeld, “Micromixers—a review on passive and active mixing principles”, Chemical Engineering Science , 18-20, D-55129, 2004.
13. N. T. Nguyen and Z. Wu, “Micromixers-a review,” J. Micromech. Microeng., 15, R1-R16, 2005.
14. J. M. Ottino, “The kinematics of mixing: stretching, chaos, and transport”, New York: Cambridge University Press, 1989.
15. H.C. Berg, E.M. Purcell, “The physics of chemoreception”, Biophysics, 20, 193-219, 1997.
16. S. Wereley, “Nano-Bio-Micro fluids tutorial”, Nanotech, 2004.
17. O. Reynolds, “An experimentsl investigation of the circumstances which determine whether the motion if water shall be direct or sinuous and the law of resistance in parallel channels”, Philosophical Transactions of the Royal Society of London A, 174-935, 1883.
18. X. F. Peng, G. P. Peterson, B. X. Wang, “Frictional flow characteristics of water flowing through rextangular microchannel”, Experimental Heat transfer, 7, 249-264, 1994.
19. Gad-el-Hak, “The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture”, Journal of Fluids Engineering, Vol. 121, 1999.
20. P. Wu, W. A. Little, “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators”, Cryogenics, 23, 273-277, 1983.
21. Reist、鄭福田、劉希平, “微粒導論”, 國立編譯館, 2001年.
22. R. F. Ismagilov, D. Rosmarin, P. J. A. Kenis, D. T. Chiu, W. Zhang, H. A. Stone, and G. M. Whitesides, “Pressure-Driven Laminar Flow in Tangential Microchannels: an Elastomeric Microfluidic Switch”, Analytical Chemistry, 73, 4682-4687, 2001.
23. D. Lee, Y.T. Chen, and T.Y. Bai, ”A study of flows in tangentially crossing micro-channels”, Microfluid Nanofluid, 7, 169-179, 2009.
24. 白庭育,「幾何外型對三維相切微管道流場之影響」, 國立成功大學航空太空工程研究所碩士論文,民國96年7月。
25. W. Kern, D.A. Poutinen, “Cleaning Solution Based on Hydrogen Peroxide for Use in Semiconductor Technology”, RCA Rev., 187-190, 1970.
26. G.W. Rubloff, “Defect Microchemistry in SiO2 /Si Structures”, Journal of Vacuum Science & Technology A Vacuum Surface and Films, 8, 1857, 1990.
27. N. LaBianca, J. Delorme, “High aspect ratio resist for thick film application”, Proceedings of SPIE, 2438, 846-852, 1995.
28. 張珮郁,「微流元件內表面張力驅動之流體流動現象的實驗探討」,國立成功大學航空太空工程研究所碩士論文,民國92年7月。
29. H.M. Xia, C. Shu, S.Y.M. Wan, and Y.T. Chew, “Influence of the Reynoldsnumber on chaotic mixing in a spatially periodic micromixer and its characterizationusing dynamical system techniques,” J. Micromech. Microeng., 16, 53-61, 2006.
30. H.M. Xia, S.Y.M. Wan, C. Shu, and Y.T. Chew,“Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers,” Lab Chip, 5, 748-755, 2005.
校內:2013-07-14公開