| 研究生: |
賀威翰 Ho, Wei-Huan |
|---|---|
| 論文名稱: |
多金屬氧酸鹽吸附於金屬有機骨架用以電催化氧化多巴胺 Polyoxometalate adsorbed in a metal–organic framework for electrocatalytic dopamine oxidation |
| 指導教授: |
龔仲偉
Kung, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 金屬有機骨架 、金屬氧酸鹽 、後修飾 、吸附 、電荷傳遞 、電催化 、多巴胺 、電化學感測 |
| 外文關鍵詞: | MOF, POM, post-synthetic modification, adsorption, charge-transfer, electrocatalysis, dopamine, electrochemical sensing |
| 相關次數: | 點閱:95 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬氧酸鹽(Polyoxometalate, POM),簡稱多酸,為一種聚陰離子,通常是由具高價態之過渡金屬與氧原子所形成的配位多面體,能夠在不改變其原本結構的情況下,參與快速且可逆的氧化還原反應,此特性使得多酸經常被應用在觸媒領域。然而多酸易溶於水的問題大大地限制了它在非勻相電催化系統上的應用,為解決此問題,我們使用了一種新型的孔洞性材料―金屬有機骨架(metal-organic frameworks, MOFs)來固定多酸以形成異質電觸媒。
MOFs是一系列由金屬離子或金屬離子簇所形成的節點與有機連接器所組成的奈米孔洞材料,其中以鋯為基底的MOF有著水穩性以及高表面積的優點,非常適合用以固定多酸,雖然其幾近絕緣體的特性使得電化學表現通常都不佳,但多酸能夠在MOF結構內發生氧化還原躍遷使電荷得以在骨架內傳遞,進而提升電化學表現。在本篇論文中使用了後修飾含浸法,利用多酸離子與骨架節點之間的吸引力,將多酸固定於以鋯為基底的MOF中並作為異質電觸媒,除了能避免多酸溶於水,同時也能提升整體的電化學表現。所設計之複合多孔材料能夠被利用於電催化氧化多巴胺,進而可被應用於電化學式之多巴胺感測。
Polyoxometalates (POMs) are isolated metal oxide clusters, which have tunable size and ability to undergo fast redox reactions with multiple transferred electrons per polyanion; this characteristic allows the use of POMs for a wide range of applications, primarily in catalysis. However, POMs also suffer from their low surface areas and high solubility in water, making POMs difficult to be used as heterogeneous catalysts in aqueous media with good reusability.
In this work, we installed a vanadium-based POM into a zirconium-based metal–organic framework (MOF), NU-902. Due to the electrostatic interaction between the zirconium-based nodes and the POM, POM clusters can be immobilized in the pores of the entire MOF crystals, and no leaching of POMs was observed in aqueous media. As the vanadium-based POM is stable and redox-active in acidic aqueous solutions, and NU-902 is highly stable in such aqueous environments, the obtained POM@MOF hybrid material was deposited as a thin film and utilized in electrocatalysis. As a result, the hybrid material was found to exhibit excellent electrocatalytic activity for the oxidation of dopamine (DA) to generate dopaquinone (DOQ) and was applied for electrochemical dopamine sensors with high sensitivity.
[1] R. Kotz, and M. Carlen, Principles and Applications of Electrochemical Capacitors. Electrochim. Acta, 45, 2483-2498, 2000.
[2] D. Grieshaber, R. MacKenzie, J. Voros, and E. Reimhult, Electrochemical Biosensors - Sensor Principles and Architectures. Sensors, 8, 1400-1458, 2008.
[3] R. W. Murray, Chemically Modified Electrodes. Electroanal. Chem., 13, 191-368, 1984.
[4] M. L. Shi, and F. C. Anson, Rapid Oxidation of Ru(NH3)63+ by Os(bpy)33+ Within Nafion Coatings on Electrodes. Langmuir, 12, 2068-2075, 1996.
[5] P. Bertoncello, I. Ciani, F. Li, and P. R. Unwin, Measurement of Apparent Diffusion Coefficients Within Ultrathin Nafion Langmuir-Schaefer Films: Comparison of a Novel Scanning Electrochemical Microscopy Approach with Cyclic Voltammetry. Langmuir, 22, 10380-10388, 2006.
[6] B. C. H. Steele, and A. Heinzel, Materials for Fuel-Cell Technologies. Nature, 414, 345-352, 2001.
[7] P. Simon, and Y. Gogotsi, Materials for Electrochemical Capacitors. Nat. Mater., 7, 845-854, 2008.
[8] J. H. Wang, W. Cui, Q. Liu, Z. C. Xing, A. M. Asiri, and X. P. Sun, Recent Progress in Cobalt-based Heterogeneous Catalysts for Electrochemical Water Splitting. Adv. Mater., 28, 215-230, 2016.
[9] J. Wang, Electrochemical Glucose Biosensors. Chem. Rev., 108, 814-825, 2008.
[10] N. J. Ronkainen, H. B. Halsall, and W. R. Heineman, Electrochemical Biosensors. Chem. Soc. Rev., 39, 1747-1763, 2010.
[11] P. N. Bartlett, Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications. 2008.
[12] K. Y. Goud, M. Satyanarayana, A. Hayat, K. V. Gobi, and J. L. Marty, Nanomaterial-based Electrochemical Sensors in Pharmaceutical Applications. Nanoparticles in Pharmacotherapy, 195-216, 2019.
[13] H. L. Qi, C. Wang, R. Zou, and L. B. Li, Electrogenerated Chemiluminescence Sensor for the Determination of Propranolol Hydrochloride. Anal. Methods, 3, 446-451, 2011.
[14] M. S. Gopal, I. Anitha, S. Jesny, and S. Menon, Development of a 2-Methoxyphenyl-4,5-Dicarbmethoxy-Cycl 3.2.2 Azine Fluorescen Sensor for Co2+. J. Lumines., 179, 361-365, 2016.
[15] L. N. D. Pereira, I. S. da Silva, T. P. Araujo, A. A. Tanaka, and L. Angnes, Fast Quantification of Alpha-Lipoic Acid in Biological Samples and Dietary Supplements Using Batch Injection Analysis with Amperometric Detection. Talanta, 154, 249-254, 2016.
[16] S. Afreen, K. Muthoosamy, S. Manickam, and U. Hashim, Functionalized Fullerene (C-60) as a Potential Nanomediator in the Fabrication of Highly Sensitive Biosensors. Biosens. Bioelectron., 63, 354-364, 2015.
[17] Z. O. Uygun, and Y. Dilgin, A Novel Impedimetric Sensor Based on Molecularly Imprinted Polypyrrole Modified Pencil Graphite Electrode for Trace Level Determination of Chlorpyrifos. Sens. Actuator B-Chem., 188, 78-84, 2013.
[18] K. Y. Chumbimuni-Torres, N. Rubinova, A. Radu, L. T. Kubota, and E. Bakker, Solid Contact Potentiometric Sensors for Trace Level Measurements. Anal. Chem., 78, 1318-1322, 2006.
[19] C. W. Kung, T. H. Chang, L. Y. Chou, J. T. Hupp, O. K. Farha, and K. C. Ho, Porphyrin-based Metal-Organic Framework Thin Films for Electrochemical Nitrite Detection. Electrochem. Commun., 58, 51-56, 2015.
[20] Y. S. Chang, J. H. Li, Y. C. Chen, W. H. Ho, Y. D. Song, and C. W. Kung, Electrodeposition of Pore-Confined Cobalt in Metal-Organic Framework Thin Films Toward Electrochemical H2O2 Detection. Electrochim. Acta, 347, 10, 2020.
[21] J. B. Allen, and R. F. Larry, Electrochemical Methods Fundamentals and Applications. 2001.
[22] K. C. Berridge, The debate Over Dopamine’s Role in Reward: The Case for Incentive Salience. Psychopharmacology, 191, 391-431, 2007.
[23] J. Jankovic, Parkinson’s Disease: Clinical Features and Diagnosis. J. Neurol. Neurosurg. Psychiatry, 79, 368-376, 2008.
[24] J. Segura‐Aguilar, I. Paris, P. Muñoz, E. Ferrari, L. Zecca, and F. A. Zucca, Protective and Toxic Roles of Dopamine in Parkinson's Disease. J. Neurochem., 129, 898-915, 2014.
[25] C. Cepeda, K. P. Murphy, M. Parent, and M. S. Levine, The Role of Dopamine in Huntington's Disease. Prog. Brain Res., 211, 235-254, 2014.
[26] G. E. De Benedetto, D. Fico, A. Pennetta, C. Malitesta, G. Nicolardi, D. D. Lofrumento, F. De Nuccio, and V. La Pesa, A Rapid and Simple Method for the Determination of 3,4-Dihydroxyphenylacetic Acid, Norepinephrine, Dopamine, and Serotonin in Mouse Brain Homogenate by HPLC with Fluorimetric Detection. J. Pharm. Biomed. Anal., 98, 266-270, 2014.
[27] S. Dutta, C. Ray, S. Mallick, S. Sarkar, R. Sahoo, Y. Negishi, and T. Pal, A Gel-based Approach to Design Hierarchical CuS Decorated Reduced Graphene Oxide Nanosheets for Enhanced Peroxidase-like Activity Leading to Colorimetric Detection of Dopamine. J. Phys. Chem. C, 119, 23790-23800, 2015.
[28] J. Lovric, J. Dunevall, A. Larsson, L. Ren, S. Andersson, A. Meibom, P. Malmberg, M. E. Kurczy, and A. G. Ewing, Nano Secondary Ion Mass Spectrometry Imaging of Dopamine Distribution Across Nanometer Vesicles. ACS Nano, 11, 3446-3455, 2017.
[29] Y. F. Zhang, B. X. Li, and X. L. Chen, Simple and Sensitive Detection of Dopamine in the Presence of High Concentration of Ascorbic Acid Using Gold Nanoparticles as Colorimetric Probes. Microchim. Acta, 168, 107-113, 2010.
[30] M. Zhou, Y. M. Zhai, and S. J. Dong, Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Anal. Chem., 81, 5603-5613, 2009.
[31] Z. H. Sheng, X. Q. Zheng, J. Y. Xu, W. J. Bao, F. B. Wang, and X. H. Xia, Electrochemical Sensor Based on Nitrogen Doped Graphene: Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Biosens. Bioelectron., 34, 125-131, 2012.
[32] D. L. Long, E. Burkholder, and L. Cronin, Polyoxometalate Clusters, Nanostructures and Materials: From Self Assembly to Designer Materials and Devices. Chem. Soc. Rev., 36, 105-121, 2007.
[33] D. L. Long, R. Tsunashima, and L. Cronin, Polyoxometallate als Bausteine für Funktionelle Nanosysteme. Angew. Chem., 122, 1780-1803, 2010.
[34] C. Freire, D. M. Fernandes, M. Nunes, and V. K. Abdelkader, POM & MOF‐based Electrocatalysts for Energy‐related Reactions. ChemCatChem, 10, 1703-1730, 2018.
[35] S.-S. Wang, and G.-Y. Yang, Recent Advances in Polyoxometalate-Catalyzed Reactions. Chem. Rev., 115, 4893-4962, 2015.
[36] F. M. Toma, A. Sartorel, M. Iurlo, M. Carraro, P. Parisse, C. Maccato, S. Rapino, B. R. Gonzalez, H. Amenitsch, and T. Da Ros, Efficient Water Oxidation at Carbon Nanotube–Polyoxometalate Electrocatalytic Interfaces. Nat. Chem, 2, 826-831, 2010.
[37] D. Wang, and S. Lu, Pd/HPW-PDDA-MWCNTs as Effective Non-Pt Electrocatalysts for Oxygen Reduction Reaction of Fuel Cells. ChemComm, 46, 2058-2060, 2010.
[38] D. Pan, J. Chen, W. Tao, L. Nie, and S. Yao, Polyoxometalate-Modified Carbon Nanotubes: New Catalyst Support for Methanol Electro-oxidation. Langmuir, 22, 5872-5876, 2006.
[39] N. Kawasaki, H. Wang, R. Nakanishi, S. Hamanaka, R. Kitaura, H. Shinohara, T. Yokoyama, H. Yoshikawa, and K. Awaga, Nanohybridization of Polyoxometalate Clusters and Single‐wall Carbon Nanotubes: Applications in Molecular Cluster Batteries. Angew. Chem., 123, 3533-3536, 2011.
[40] H. Wang, S. Hamanaka, Y. Nishimoto, S. Irle, T. Yokoyama, H. Yoshikawa, and K. Awaga, In Operando X-ray Absorption Fine Structure Studies of Polyoxometalate Molecular Cluster Batteries: Polyoxometalates as Electron Sponges. J. Am. Chem. Soc., 134, 4918-4924, 2012.
[41] T. Akter, K. Hu, and K. Lian, Investigations of Multilayer Polyoxometalates-Modified Carbon Nanotubes for Electrochemical Capacitors. Electrochim. Acta, 56, 4966-4971, 2011.
[42] A. Salimi, A. Korani, R. Hallaj, R. Khoshnavazi, and H. Hadadzadeh, Immobilization of [Cu(bpy)2]Br2 Complex onto a Glassy Carbon Electrode Modified with α-SiMo12O404− and Single Walled Carbon Nanotubes: Application to Nanomolar Detection of Hydrogen Peroxide and Bromate. Anal. Chim. Acta, 635, 63-70, 2009.
[43] Y.-Y. Ling, Q.-A. Huang, M.-S. Zhu, D.-X. Feng, X.-Z. Li, and Y. Wei, A Facile One-step Electrochemical Fabrication of Reduced Graphene Oxide–Mutilwall Carbon Nanotubes–Phospotungstic Acid Composite for Dopamine Sensing. J. Electroanal. Chem., 693, 9-15, 2013.
[44] M. Pope, Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity: From Platonic Solids to Anti-Retroviral Activity. 10, 1994.
[45] B. Hasenknopf, Polyoxometalates: Introduction to a Class of Inorganic Compounds and Their Biomedical Applications. Front. Biosci, 10, 2005.
[46] H. T. Evans Jr, The Molecular Structure of the Isopoly Complex Ion, Decavanadate (V10O286-). Inorg. Chem., 5, 967-977, 1966.
[47] M. Aureliano, and D. C. Crans, Decavanadate (V10O286-) and Oxovanadates: Oxometalates with Many Biological Activities. J. Inorg. Biochem., 103, 536-546, 2009.
[48] P. M. Matias, J. a. C. Pessoa, M. T. Duarte, and C. Madeira, Tetrapotassium Disodium Decavanadate (V) Decahydrate. Acta Crystallogr. C, 56, iuc0000028-e76, 2000.
[49] M. Ammam, Polyoxometalates: formation, Structures, Principal Properties, Main Deposition Methods and Application in Sensing. J. Mater. Chem. A, 1, 6291-6312, 2013.
[50] A. Kuhn, and F. C. Anson, Adsorption of Monolayers of P2Mo18O626-and Deposition of Multiple Layers of Os (bpy)32+−P2Mo18O626-on Electrode Surfaces. Langmuir, 12, 5481-5488, 1996.
[51] N. Anwar, M. Vagin, F. Laffir, G. Armstrong, C. Dickinson, and T. McCormac, Transition Metal Ion-substituted Polyoxometalates Entrapped in Polypyrrole as an Electrochemical Sensor for Hydrogen Peroxide. Analyst, 137, 624-630, 2012.
[52] T. Gan, J. Sun, S. Cao, F. Gao, Y. Zhang, and Y. Yang, One-step Electrochemical Approach for the Preparation of Graphene Wrapped-phosphotungstic Acid Hybrid and Its Application for Simultaneous Determination of Sunset Yellow and Tartrazine. Electrochim. Acta, 74, 151-157, 2012.
[53] Y. Li, W. Bu, L. Wu, and C. Sun, A New Amperometric Sensor for the Determination of Bromate, Iodate and Hydrogen Peroxide Based on Titania Sol–gel Matrix for Immobilization of Cobalt Substituted Keggin-type Cobalttungstate Anion by Vapor Deposition Method. Sens. Actuators B Chem., 107, 921-928, 2005.
[54] G. Férey, Hybrid Porous Solids: Past, Present, Future. Chem. Soc. Rev., 37, 191-214, 2008.
[55] H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, 2013.
[56] S. Kitagawa, R. Kitaura, and S. i. Noro, Functional Porous Coordination Polymers. Angew. Chem. Int. Ed., 43, 2334-2375, 2004.
[57] A. J. Howarth, Y. Y. Liu, P. Li, Z. Y. Li, T. C. Wang, J. Hupp, and O. K. Farha, Chemical, Thermal and Mechanical Stabilities of Metal-Organic Frameworks. Nat. Rev. Mater., 1, 15, 2016.
[58] I. M. Hönicke, I. Senkovska, V. Bon, I. A. Baburin, N. Bönisch, S. Raschke, J. D. Evans, and S. Kaskel, Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials. Angew. Chem. Int. Ed., 57, 13780-13783, 2018.
[59] T. Islamoglu, S. Goswami, Z. Li, A. J. Howarth, O. K. Farha, and J. T. Hupp, Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications. Acc. Chem. Res., 50, 805-813, 2017.
[60] S. M. Cohen, Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chem. Rev., 112, 970-1000, 2012.
[61] Y.-C. Wang, Y.-C. Chen, W.-S. Chuang, J.-H. Li, Y.-S. Wang, C.-H. Chuang, C.-Y. Chen, and C.-W. Kung, Pore-Confined Silver Nanoparticles in a Porphyrinic Metal–Organic Framework for Electrochemical Nitrite Detection. ACS Appl. Nano Mater., 3, 9440-9448, 2020.
[62] Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha, and T. Yildirim, Methane Storage in Metal–Organic Frameworks: Current Records, Surprise Findings, and Challenges. J. Am. Chem. Soc., 135, 11887-11894, 2013.
[63] C.-Y. Gao, H.-R. Tian, J. Ai, L.-J. Li, S. Dang, Y.-Q. Lan, and Z.-M. Sun, A Microporous Cu-MOF with Optimized Open Metal Sites and Pore Spaces for High Gas Storage and Active Chemical Fixation of CO2. ChemComm, 52, 11147-11150, 2016.
[64] T. M. McDonald, J. A. Mason, X. Kong, E. D. Bloch, D. Gygi, A. Dani, V. Crocella, F. Giordanino, S. O. Odoh, and W. S. Drisdell, Cooperative Insertion of CO2 in Diamine-appended Metal-Organic Frameworks. Nature, 519, 303-308, 2015.
[65] T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. Xamena, and J. Gascon, Metal-Organic Framework Nanosheets in Polymer Composite Materials for Gas Separation. Nat. Mater., 14, 48-55, 2015.
[66] J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, Metal-Organic Framework Materials as Catalysts. Chem. Soc. Rev., 38, 1450-1459, 2009.
[67] L. Meng, Q. Cheng, C. Kim, W. Y. Gao, L. Wojtas, Y. S. Chen, M. J. Zaworotko, X. P. Zhang, and S. Ma, Crystal Engineering of a Microporous, Catalytically Active fcu Topology MOF Using a Custom‐Designed Metalloporphyrin Linker. Angew. Chem., 124, 10229-10232, 2012.
[68] K. M. Choi, H. M. Jeong, J. H. Park, Y.-B. Zhang, J. K. Kang, and O. M. Yaghi, Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano, 8, 7451-7457, 2014.
[69] R. R. Salunkhe, Y. V. Kaneti, and Y. Yamauchi, Metal–Organic Framework-Derived Nanoporous Metal Oxides Toward Supercapacitor Applications: Progress and Prospects. ACS Nano, 11, 5293-5308, 2017.
[70] P. Horcajada, C. Serre, M. Vallet‐Regí, M. Sebban, F. Taulelle, and G. Férey, Metal–Organic Frameworks as Efficient Materials for Drug Delivery. Angew. Chem., 118, 6120-6124, 2006.
[71] M. X. Wu, and Y. W. Yang, Metal-Organic Framework (MOF)-Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater., 29, 20, 2017.
[72] D. Liu, K. Lu, C. Poon, and W. Lin, Metal–Organic Frameworks as Sensory Materials and Imaging Agents. Inorg. Chem., 53, 1916-1924, 2014.
[73] J. E. Mondloch, M. J. Katz, N. Planas, D. Semrouni, L. Gagliardi, J. T. Hupp, and O. K. Farha, Are Zr6-based MOFs Water Stable? Linker Hydrolysis vs. Capillary-Force-Driven Channel Collapse. ChemComm, 50, 8944-8946, 2014.
[74] S. Yuan, J.-S. Qin, C. T. Lollar, and H.-C. Zhou, Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Cent. Sci., 4, 440-450, 2018.
[75] Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li, and H.-C. Zhou, Zr-based Metal–Organic Frameworks: Design, Synthesis, Structure, and Applications. Chem. Soc. Rev., 45, 2327-2367, 2016.
[76] L. Sun, M. G. Campbell, and M. Dincă, Electrically Conductive Porous Metal–Organic Frameworks. Angew. Chem. Int. Ed., 55, 3566-3579, 2016.
[77] C. H. Hendon, D. Tiana, and A. Walsh, Conductive Metal–Organic Frameworks and Networks: Fact or Fantasy? Phys. Chem. Chem. Phys, 14, 13120-13132, 2012.
[78] S. Lin, P. M. Usov, and A. J. Morris, The Role of Redox Hopping in Metal–Organic Framework Electrocatalysis. ChemComm, 54, 6965-6974, 2018.
[79] P. M. Usov, C. Fabian, and D. M. D'Alessandro, Rapid Determination of the Optical and Redox Properties of a Metal–Organic Framework via in Situ Solid State Spectroelectrochemistry. ChemComm, 48, 3945-3947, 2012.
[80] C.-W. Kung, T.-H. Chang, L.-Y. Chou, J. T. Hupp, O. K. Farha, and K.-C. Ho, Porphyrin-based Metal–Organic Framework Thin Films for Electrochemical Nitrite Detection. Electrochem. Commun., 58, 51-56, 2015.
[81] I. Hod, M. D. Sampson, P. Deria, C. P. Kubiak, O. K. Farha, and J. T. Hupp, Fe-Porphyrin-Based Metal–Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2. ACS Catal., 5, 6302-6309, 2015.
[82] L. Sun, T. Miyakai, S. Seki, and M. Dincă, Mn2 (2, 5-Disulfhydrylbenzene-1, 4-Dicarboxylate): A Microporous Metal–Organic Framework with Infinite (− Mn–S−)∞ Chains and High Intrinsic Charge Mobility. J. Am. Chem. Soc., 135, 8185-8188, 2013.
[83] D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. l. Er, C. R. Wade, C. K. Brozek, A. n. Aspuru-Guzik, and M. Dincă, High Electrical Conductivity in Ni3(2, 3, 6, 7, 10, 11-Hexaiminotriphenylene)2, a Semiconducting Metal–Organic Graphene Analogue. J. Am. Chem. Soc., 136, 8859-8862, 2014.
[84] Y.-C. Chen, W.-H. Chiang, D. Kurniawan, P.-C. Yeh, K.-i. Otake, and C.-W. Kung, Impregnation of Graphene Quantum Dots into a Metal–Organic Framework to Render Increased Electrical Conductivity and Activity for Electrochemical Sensing. ACS Appl. Mater. Interfaces, 11, 35319-35326, 2019.
[85] Y.-S. Wang, J.-L. Liao, Y.-S. Li, Y.-C. Chen, J.-H. Li, W. H. Ho, W.-H. Chiang, and C.-W. Kung, Zirconium-Based Metal–Organic Framework Nanocomposites Containing Dimensionally Distinct Nanocarbons for Pseudocapacitors. ACS Appl. Nano Mater., 3, 1448-1456, 2020.
[86] J. S. Seo, D. Whang, H. Lee, S. Im Jun, J. Oh, Y. J. Jeon, and K. Kim, A Homochiral Metal–Organic Porous Material for Enantioselective Separation and Catalysis. Nature, 404, 982-986, 2000.
[87] Z. Wang, and S. M. Cohen, Postsynthetic Covalent Modification of a Neutral Metal− Organic Framework. J. Am. Chem. Soc., 129, 12368-12369, 2007.
[88] K. K. Tanabe, and S. M. Cohen, Postsynthetic Modification of Metal–Organic Frameworks—A Progress Report. Chem. Soc. Rev., 40, 498-519, 2011.
[89] Z. Wang, and S. M. Cohen, Postsynthetic Modification of Metal–Organic Frameworks. Chem. Soc. Rev., 38, 1315-1329, 2009.
[90] C. Brozek, and M. Dincă, Cation Exchange at the Secondary Building Units of Metal–Organic Frameworks. Chem. Soc. Rev., 43, 5456-5467, 2014.
[91] W. Morris, C. J. Doonan, H. Furukawa, R. Banerjee, and O. M. Yaghi, Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. J. Am. Chem. Soc., 130, 12626-12627, 2008.
[92] M. Kalaj, and S. M. Cohen, Postsynthetic Modification: An Enabling Technology for the Advancement of Metal–Organic Frameworks. ACS Cent. Sci., 6, 1046-1057, 2020.
[93] R. J. Marshall, and R. S. Forgan, Postsynthetic Modification of Zirconium Metal-Organic Frameworks. Eur. J. Inorg. Chem., 2016, 4310-4331, 2016.
[94] S. M. Cohen, Modifying MOFs: New Chemistry, New Materials. Chem. Sci., 1, 32-36, 2010.
[95] C.-H. Chuang, J.-H. Li, Y.-C. Chen, Y.-S. Wang, and C.-W. Kung, Redox-Hopping and Electrochemical Behaviors of Metal–Organic Framework Thin Films Fabricated by Various Approaches. J. Phys. Chem. C, 124, 20854-20863, 2020.
[96] D. M. Fernandes, A. D. Barbosa, J. o. Pires, S. S. Balula, L. Cunha-Silva, and C. Freire, Novel Composite Material Polyoxovanadate@ MIL-101 (Cr): A Highly Efficient Electrocatalyst for Ascorbic Acid Oxidation. ACS Appl. Mater. Interfaces, 5, 13382-13390, 2013.
[97] G. Paille, M. Gomez-Mingot, C. Roch-Marchal, B. Lassalle-Kaiser, P. Mialane, M. Fontecave, C. Mellot-Draznieks, and A. Dolbecq, A Fully Noble Metal-Free Photosystem Based on Cobalt-Polyoxometalates Immobilized in a Porphyrinic Metal–Organic Framework for Water Oxidation. J. Am. Chem. Soc., 140, 3613-3618, 2018.
[98] C. T. Buru, A. E. Platero-Prats, D. G. Chica, M. G. Kanatzidis, K. W. Chapman, and O. K. Farha, Thermally Induced Migration of a Polyoxometalate Within a Metal–Organic Framework and Its Catalytic Effects. J. Mater. Chem. A, 6, 7389-7394, 2018.
[99] T. Y. Huang, C. W. Kung, Y. T. Liao, S. Y. Kao, M. Cheng, T. H. Chang, J. Henzie, H. R. Alamri, Z. A. Alothman, and Y. Yamauchi, Enhanced Charge Collection in MOF‐525–PEDOT Nanotube Composites Enable Highly Sensitive Biosensing. Adv. Sci., 4, 1700261, 2017.
[100] S. Lu, M. Hummel, K. Chen, Y. Zhou, S. Kang, and Z. Gu, Synthesis of Au@ ZIF-8 Nanocomposites for Enhanced Electrochemical Detection of Dopamine. Electrochem. Commun., 114, 106715, 2020.
[101] H. Zhang, M. Zhao, and Y. Lin, Stability of ZIF-8 in Water Under Ambient Conditions. Microporous Mesoporous Mater., 279, 201-210, 2019.
[102] P. Deria, D. A. Gómez-Gualdrón, I. Hod, R. Q. Snurr, J. T. Hupp, and O. K. Farha, Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato) Zinc (II) MOFs. J. Am. Chem. Soc., 138, 14449-14457, 2016.
[103] H.-Y. Chen, J. Friedl, C.-J. Pan, A. Haider, R. Al-Oweini, Y. L. Cheah, M.-H. Lin, U. Kortz, B.-J. Hwang, and M. Srinivasan, In Situ X-Ray Absorption Near Edge Structure Studies and Charge Transfer Kinetics of Na 6 [V 10 O 28] Electrodes. Phys. Chem. Chem. Phys, 19, 3358-3365, 2017.
[104] H. Y. Chen, G. Wee, R. Al‐Oweini, J. Friedl, K. S. Tan, Y. Wang, C. L. Wong, U. Kortz, U. Stimming, and M. Srinivasan, A Polyoxovanadate as an Advanced Electrode Material for Supercapacitors. ChemPhysChem, 15, 2162-2169, 2014.
[105] X. Gong, H. Noh, N. C. Gianneschi, and O. K. Farha, Interrogating Kinetic versus Thermodynamic Topologies of Metal–Organic Frameworks via Combined Transmission Electron Microscopy and X-ray Diffraction Analysis. J. Am. Chem. Soc., 141, 6146-6151, 2019.
[106] H. Noh, C.-W. Kung, K.-i. Otake, A. W. Peters, Z. Li, Y. Liao, X. Gong, O. K. Farha, and J. T. Hupp, Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum Sulfide-Functionalized Metal–Organic Framework. ACS Catal., 8, 9848-9858, 2018.
[107] J.-H. Li, Y.-C. Chen, Y.-S. Wang, W. H. Ho, Y.-J. Gu, C.-H. Chuang, Y.-D. Song, and C.-W. Kung, Electrochemical Evolution of Pore-Confined Metallic Molybdenum in a Metal–Organic Framework (MOF) for All-MOF-Based Pseudocapacitors. ACS Appl. Energy Mater., 3, 6258-6267, 2020.
[108] K. Momma, and F. Izumi, VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis. J. Appl. Crystallogr., 41, 653-658, 2008.
[109] A. A. Yakovenko, J. H. Reibenspies, N. Bhuvanesh, and H.-C. Zhou, Generation and Applications of Structure Envelopes for Porous Metal–Organic Frameworks. J. Appl. Crystallogr., 46, 346-353, 2013.
[110] S. R. Ahrenholtz, C. C. Epley, and A. J. Morris, Solvothermal Preparation of an Electrocatalytic Metalloporphyrin MOF Thin Film and Its Redox Hopping Charge-Transfer Mechanism. J. Am. Chem. Soc., 136, 2464-2472, 2014.
[111] S. Lin, Y. Pineda‐Galvan, W. A. Maza, C. C. Epley, J. Zhu, M. C. Kessinger, Y. Pushkar, and A. J. Morris, Electrochemical Water Oxidation by a Catalyst‐Modified Metal–Organic Framework Thin Film. ChemSusChem, 10, 514-522, 2017.
[112] D. N. Blauch, and J. M. Saveant, Dynamics of Electron Hopping in Assemblies of Redox Centers. Percolation and Diffusion. J. Am. Chem. Soc., 114, 3323-3332, 1992.
[113] C.-W. Kung, J. E. Mondloch, T. C. Wang, W. Bury, W. Hoffeditz, B. M. Klahr, R. C. Klet, M. J. Pellin, O. K. Farha, and J. T. Hupp, Metal–Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions to Enable Electrocatalytic Water Oxidation. ACS Appl. Mater. Interfaces, 7, 28223-28230, 2015.
[114] I. Gualandi, E. Scavetta, S. Zappoli, and D. Tonelli, Electrocatalytic Oxidation of Salicylic Acid by a Cobalt Hydrotalcite-Like Compound Modified Pt Electrode. Biosens. Bioelectron., 26, 3200-3206, 2011.
[115] R. Gulaboski, and V. Mirceski, New Aspects of the Electrochemical-Catalytic (EC’) Mechanism in Square-Wave Voltammetry. Electrochim. Acta, 167, 219-225, 2015.
[116] C. Lin, L. Chen, E. E. Tanner, and R. G. Compton, Electroanalytical Study of Dopamine Oxidation on Carbon Electrodes: From the Macro-to The Micro-Scale. Phys. Chem. Chem. Phys, 20, 148-157, 2018.
[117] A. W. Sternson, R. McCreery, B. Feinberg, and R. N. Adams, Electrochemical Studies of Adrenergic Neurotrans-Mitters and Related Compounds. J. Electroanal. Chem. Interf. Electrochem., 46, 313-321, 1973.
[118] X. Feng, H. Huang, Q. Ye, J.-J. Zhu, and W. Hou, Ag/Polypyrrole Core− Shell Nanostructures: Interface Polymerization, Characterization, and Modification by Gold Nanoparticles. J. Phys. Chem. C, 111, 8463-8468, 2007.
[119] S. Chen, C. Wang, M. Zhang, W. Zhang, J. Qi, X. Sun, L. Wang, and J. Li, N-Doped Cu-MOFs for Efficient Electrochemical Determination of Dopamine and Sulfanilamide. J. Hazard. Mater., 390, 122157, 2020.
[120] Y.-Y. Zheng, C.-X. Li, X.-T. Ding, Q. Yang, Y.-M. Qi, H.-M. Zhang, and L.-T. Qu, Detection of Dopamine at Graphene-ZIF-8 Nanocomposite Modified Electrode. Chin. Chem. Lett., 28, 1473-1478, 2017.
[121] G. P. Keeley, N. McEvoy, H. Nolan, S. Kumar, E. Rezvani, M. Holzinger, S. Cosnier, and G. S. Duesberg, Simultaneous Electrochemical Determination of Dopamine and Paracetamol Based on Thin Pyrolytic Carbon Films. Anal. Methods, 4, 2048-2053, 2012.
[122] M. Ko, L. Mendecki, A. M. Eagleton, C. G. Durbin, R. M. Stolz, Z. Meng, and K. A. Mirica, Employing Conductive Metal–Organic Frameworks for Voltammetric Detection of Neurochemicals. J. Am. Chem. Soc., 142, 11717-11733, 2020.
[123] Y. Fan, H.-T. Lu, J.-H. Liu, C.-P. Yang, Q.-S. Jing, Y.-X. Zhang, X.-K. Yang, and K.-J. Huang, Hydrothermal Preparation and Electrochemical Sensing Properties of TiO2–Graphene Nanocomposite. Colloids Surf. B, 83, 78-82, 2011.
[124] Z. Qiu, T. Yang, R. Gao, G. Jie, and W. Hou, An Electrochemical Ratiometric Sensor Based on 2D MOF Nanosheet/Au/Polyxanthurenic Acid Composite for Detection of Dopamine. J. Electroanal. Chem., 835, 123-129, 2019.
[125] Y.-R. Kim, S. Bong, Y.-J. Kang, Y. Yang, R. K. Mahajan, J. S. Kim, and H. Kim, Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using Graphene Modified Electrodes. Biosens. Bioelectron., 25, 2366-2369, 2010.
[126] J. Li, J. Xia, F. Zhang, Z. Wang, and Q. Liu, A Novel Electrochemical Sensor Based on Copper‐based Metal‐Organic Framework for the Determination of Dopamine. J. Chin. Chem. Soc., 65, 743-749, 2018.