| 研究生: |
蔡東原 Tsai, Dong-Yuan |
|---|---|
| 論文名稱: |
共晶型錫基合金之高荷電破壞特性探討 A Study on Fracture Characterists of Eutectic Sn-based Alloys under High Electrical Current |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 陳立輝 Chen, Li-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 可靠度工程 、銲錫 、韋伯解析 、電阻係數 、熔斷臨界電流 、高荷電 、通電壽命 、循環壽命 |
| 外文關鍵詞: | fusing time, Weibull analysis, solder, resistivity, reliability engineering, high electrical current, number of cycles to fusion, fusing current |
| 相關次數: | 點閱:148 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電子產品的微小化是時代的潮流。而隨著微小化的發展,銲錫接點的尺寸也因此減小,單位面積所通過之電流通量也越來越大。為理解銲錫材料在高荷電行為及可靠度表現,本研究針對Sn-Pb合金以及Sn-Zn、Sn-Ag和Sn-Cu等無鉛銲料進行探討。
實驗結果顯示當以固定速率提高施加電流達一臨界值 (熔斷臨界電流),或施加一固定電流達臨界通電時間 (通電壽命),試片均會因熔斷造成短路。上述之熔斷臨界電流以及通電壽命之大小順序皆為Sn-9Zn > Sn-3.5Ag > Sn-0.7Cu >> Sn-37Pb,與銲錫塊材之電阻係數高低呈反比關係。即電阻係數較小之銲錫合金具較佳之高荷電性質。
另外,本研究亦進行於固定負載電流 (熔斷臨界電流之70%) 之循環通電斷電實驗,調查各試料循環壽命 (臨界熔斷次數) 及可靠度。結果顯示循環壽命長短之趨勢則為:Sn-3.5Ag > Sn-0.7Cu >> Sn-9Zn > Sn-37Pb。此現象與銲錫之熔點及微觀組織特徵有關。四種銲錫合金中,Sn-37Pb韋伯模數為0.83,破壞率型態為初期破壞型。Sn-3.5Ag韋伯模數為1.15,破壞形式較偏向於偶發破壞型;Sn-9Zn及Sn-0.7Cu的韋伯模數則為1.25及1.45,破壞形式為磨耗破壞型。
總而言之,Sn-3.5Ag、Sn-0.7Cu及Sn-9Zn等合金之高荷電性能均較Sn-37Pb為佳,皆可考慮為高荷電應用條件下之無鉛化取代銲料,其中又以Sn-0.7Cu之可靠度最為優良。
The miniaturization of electronic product is a trend of nowadays. Consequently, the size of solder joint will reduce and thus the current density will become higher. This study aimed to investigate the properties and reliability of binary eutectic tin-based alloys under high electrical current stressing, including Sn-Pb, Sn-Zn, Sn-Ag, and Sn-Cu.
Results show that the solder strips were fused and thus led to a short circuit when suffering some situations, (1) the stressed current is raised with a constant increasing rate and reaches a critical value (i.e. critical current to fusion), (2) the strips are stressed with a constant current for a critical time (i.e. critical time to fusion) and (3) the strips are stressed with a on-off current for critical number of cycles (i.e. critical cycles to fusion). Both the critical current to fusion and critical time to fusion decrease in turn from Sn-Zn, Sn-Ag and Sn-Cu to Sn-Pb. Notably, Sn-Pb show much lower critical current and shorter critical time to the former three specimens. This is closely related to the electrical resistance of the solders.
As for the On-Off current conditions, the critical cycles to fusion of the Sn-Ag specimen is higher than that of the Sn-Cu specimen, which is in turn much higher than that of the Sn-Zn specimen and also the Sn-Pb specimen, which has the lowest number of cycles to fusion. Also, the calculated Weibull modulus is 1.45 for Sn-Cu, 1.25 for Sn-Zn (both of these two are wear-out failure mode), 1.15 for Sn-Ag (random failure mode) and 0.83 for Sn-Pb (initial failure mode). Besides electrical resistance, the melting point and microstructural feature also influence the performance of solders under on-off current stressing.
In short, the promising lead-free solders investigated in this study, Sn-Cu Sn-Ag and Sn-Zn, exhibit better performance under high electrical current stressing than the Sn-Pb solder. Among these, Sn-Cu possesses the highest reliability and can be considered as the potential replacement for Sn-Pb.
1.Microelectronics Packaging Handbook Part 3, R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Chapman & Hall, 2nd Edition, 1997, Chap. 15-16.
2.J. Liu, and C. Andersson, “Development of a Web-based Course on Lead Free Solders for Electronics Packaging”, Electronic Components and Technology Conference, 2003, pp. 739-742.
3.S. Jin, “Developing Lead-Free Solders: A Challenge and Opportunity”, JOM, July 1993, pp.13.
4.M. McCormack, and S. Jin, “New, Lead-Free Solders”, Journal of Electronic Materials, 1994, Vol. 23, pp. 635-640.
5.E. P. Wood, and K. L. Nimmo, “In Search of New Lead-Free Electronic Solders”, Journal of Electronic Materials, 1994, Vol. 23, pp. 709-713.
6.S. H. Huh, K. S. Kim, and K. Suganuma, “Effect of Ag Addition on the Microstructure and Mechanical Properties of Sn-Cu Eutectic Solder”, Materials Transactions, 2001, Vol. 42, pp.739-744.
7.H. Ye, C. Basaran, and D. C. Hopkin, “Damage Mechanics of Microelectronics Solder Joints under High Current Densities”, International Journal of Solids and Structures, 2003, Vol. 40, pp. 4021-4032.
8.H. Ye, C. Basaran, and D. C. Hopkin, “Mechanical Degradation of Microelectronics Solder Joints under Current Stressing”, International Journal of Solids and Structures, 2003, Vol. 40, pp. 7269-7284.
9.H. Ye, C. Basaran, and D. C. Hopkin, “Pb Phase Coarsening in Eutectic Pb/Sn Flip Chip Solder Joints under Electric Current Stressing”, International Journal of Solids and Structures, 2004, Vol. 41, pp. 2743-2755.
10.M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics”, Materials Science and Engineering, 2000, Vol.27, pp. 95-141.
11.M. M. Schwartz, “Fundamentals of Soldering”, ASM Handbook, 1993, Vol. 6, pp.126-137.
12.S. M. Darwish, S. Al-Habdan, and A. Al-Tamimi, “A Knowledge-base for Electronics Soldering”, Journal of Materials Processing Technology, 2000, Vol. 97, Issue : 1-3, pp. 1-9.
13.W. J. Plumbridge, “Review Solders in Electronic”, Journal of Materials Science, 1996, Vol. 31, pp. 2501-2514.
14.S. Vaynman and M. E. Fine, “Development of Fluxes for Lead-Free Solders Containing Zinc”, Scripta Materialia, 1999, Vol. 41, No. 12, pp. 1269-1271.
15.I. Artaki, and A. M. Jackson, “Evaluation of Lead-Free Solder Joints in Electronic Assemblies”, Journal of Electronic Materials, 1994, Vol. 23, pp. 757-764.
16.J. Glazer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Review”, Journal of Electronic Materials, 1994, Vol. 23, pp. 693-700.
17.J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly”, International Materials Reviews, 1995, Vol. 40, pp. 65-93.
18.B. Trumble, “Get the LEAD Out”, IEEE Spectrum, May 1998, pp.55-60.
19.K. Suganuma, “Advances in Lead-Free Electronics Soldering”, Current Opinion in Solid State and Materials Science, 2001, Vol. 5, pp. 55-64.
20.Solders and Soldering, H. H. Manko, McGraw-Hill, 2nd Edition, Chap. 4.
21.F. Heringhaus, and T.A. Painter, “Magnetoresistance of Selected Sn- and Pb- Solders at 4.2K”, Materials Letters, 2002, Vol. 57, pp. 787-793.
22.Y. Miyazawa, and T. Ariga, “Influences of Aging Treatment on Microstructure and Hardness of Sn-(Ag, Bi, Zn) Eutectic Solder Alloys, Materials Transactions, 2001, Vol. 42, pp. 776-782.
23.I. Karakaya, and W. T. Thompson, “Pb-Sn Binary Alloy Diagrams”, ASM Handbook, 1992, Vol. 3, pp.2.335.
24.莊強名,「無鉛化共晶銲錫合金之振動破壞特性研究」,國立成功大學材料科學及工程學系,博士論文,民國90年。
25.S. K. Kang “Lead (Pb)-Free Solders for Electronic Packaging”, Journal of Electronic Materials, 1994, Vol. 23, pp. 701-707.
26.K. Kawashima, T. Ito, and M. Sakuragi, “Strain-Rate and Temperature-Dependent Stress-Strain Curves of Sn-Pb Eutectic Alloy”, Journal of Materials Science, 1992, Vol. 27, pp. 6389-6390.
27.張淑如,「鉛對身體的危害」,勞工安全衛生簡訊,民國84年,第12期,17-18頁。
28.A. Ku, O. Ogunseitan, J. D. Saphores, A. Shapiro, and J. M. Schoenung, “Lead-Free Solders: Issues of Toxicity, Availability and Impacts of Extraction”, Electronic Components and Technology Conference, Proceedings. 53rd, May 27-30, 2003, pp. 47-53.
29.I. Karakaya, and W. T. Thompson, “Ag-Sn Binary Alloy Diagrams”, ASM Handbook, 1992, Vol. 3, pp.2.37.
30.W. Yang, R. W. Messler Jr., and L. E. Felton, “Microstructure Evolution of Sn-Ag Solder Joints”, Journal of Electronic Materials, 1994, Vol. 23, pp. 765-772.
31.W. Yang, L. E. Felton, and R. W. Messler, “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints”, Journal of Electronic Materials, 1995, Vol. 24 ,pp.1465-1472.
32.C. M. Miller, I. E. Anderson, and J. F. Smith, “Aviable Tin-Lead Solder Substitute: Sn-Ag-Cu”, Journal of Electronic Materials, 1994, Vol. 23, pp. 595-601.
33.Z. Chen, Y. Shi, Z. Xia, and Y. Yan, “Properties of Lead-Free Solder SnAgCu Containing Minute Amounts of Rare Earth”, Journal of Electronic Materials, 2003, Vol. 32, pp. 235-243.
34.Y. Kariya, and M. Otsuka, “Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) Solder Alloys”, Journal of Electronic Materials, 1998, Vol. 27, pp. 1229-1235.
35.N. Saunders, and A. P. Miodownik, “Ag-Sn Binary Alloy Diagrams”, ASM Handbook, 1992, Vol. 3, pp.2.179.
36.C. M. L. Wu, D. Q. Yu, and L. Wang, “Microstructure and Mechanical Properties of New Lead-Free Sn-Cu-Re Solder Alloys”, Journal of Electronic Materials, 2002, Vol. 31, pp. 928-932.
37.L. Xiao, J. Liu, L. Ye, and A. Tholen, “Characterization of Mechanical Properties of Bulk Lead Free Solders”, International Symposium on Advanced Packaging Materials, 2000, pp. 145-151.
38.Z. Moser, J. Dutkiewicz, W. Gasior, and J. Salawa, “Sn-Zn Binary Alloy Diagrams”, ASM Handbook, 1992, Vol. 3, pp.2.372.
39.K. Suganuma, T. Murata, H. Noguchi, and Y. Toyoda, “Heat Resistance of Sn-9Zn Solder/Cu Interface with or without Coating”, Journal of Materials Research, 1998, Vol. 15, pp. 884-891.
40.K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, “Wetting and Interface Microstructure Between Sn-Zn Binary Alloys and Cu”, Journal of Materials Research, 1998, Vol. 13, pp. 2859-2865.
41.M. McCormack, S. Jin, “Improved Mechanical Properties in New, Pb-Free Solder Alloys”, Journal of Electronic Materials, 1994, Vol. 23, pp. 715-720.
42.C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, “The Properties of Sn-9Zn Lead-Free Solder Alloys Doped with Trace Rare Earth Elements”, Journal of Electronic Materials, 2002, Vol. 31, pp. 921-927.
43.M. McCormack, S. Jin, H.S. Chen, and D.A. Machusak, “New Lead-Free, Sn-Zn-In Solder Alloys”, Journal of Electronic Materials, 1994, Vol. 23, pp. 687-690.
44.H. Okamoto, “Bi-Sn Binary Alloy Diagrams”, ASM Handbook, 1992, Vol. 3, pp.2.106.
45.Z.Mei, J. W. Morris Jr., “Characterization of Eutectic Sn-Bi solder joints”, Journal of Electronic Materials, 1992, Vol. 21, pp. 599-607.
46.M. McCormack, H. S. Chen, G. W. Kammlott, and S. Jin, “Sinificantly Improved Mechanical Properties of Bi-Sn Solder Alloys by Ag-Doping”, Journal of Electronic Materials, 1997, Vol. 26, pp. 954-958.
47.C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, “Microstructure-electromigration Correlation in a Thin Stripe of Eutectic SnPb Solder Stressed Between Cu Electrodes”, Applied Physics Letters, 1999, Vol.75, pp. 58-60.
48.C. Y. Liu, C. Chen, and K. N. Tu, “Electromigration in SnPb Solder Strips as a Function of Alloy Composition”, Journal of Applied Physics, 2000, Vol. 88, pp. 5703-5709.
49.T. Y. Lee, and K. N. Tu, “Electromigration of Eutectic SnPb Solder Interconnects for Flip Chip Technology”, Journal of Applied Physics, 2001, Vol. 89, pp. 3189-3194.
50.Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, “Electromigration in SnPb Solder Lines”, Journal of Applied Physics, 2001, Vol. 89, pp. 4332-4335.
51.Practical Reliability Engineering, P. D. T. O’Connor, John Wiley & Sons, 3rd Edition, 1991, Chap. 1-6.
52.Reliability in Engineering Design, K. C. Kapur, and L. R. Lamberson, John Wiley & Sons, 1977, Chap. 1-6.
53.Mechanical Reliability, A. D. S. Carter, John Wiley & Sons, 2nd Edition, 1986, Chap. 2 and 11.
54.Reliability Analysis in Engineering Applications, S. H. Dai, and M. O. Wang, Van Nostrand Reinhold, 1992, pp. 353-358.
55.可靠性工程入門,真壁肇編,陳耀茂譯,中華民國品質管制學會,民國78年,第8章。
56.電工材料,許正道編,文笙書局,民國81年,第3章。
57.電工材料,俞國平編,大中國圖書,民國69年,第4章。
58.B. Krabbenbong, “High Current Bond Design Rules Based on Bond Pad Degradation and Fusing of the Wire”, Microelectronics Reliability, 1999, Vol. 39, pp. 77-88.
59.楊哲明,「共晶組成錫基合金電衝擊破壞特性探討」, 國立成功大學材料科學及工程學系,碩士論文,民國92年。