簡易檢索 / 詳目顯示

研究生: 潘建宇
Pan, Chien-Yu
論文名稱: 不同矽銅/鎂比例之鋁合金焊道組織特性與機械性質研究
A Study of Microstructure and Mechanical Properties of Aluminum Alloy Weld Bead with Different Si-Cu/Mg Ratio
指導教授: 洪飛義
Hong, Fei-Yi
呂傳盛
Lui, Chuan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 120
中文關鍵詞: 鋁合金焊條焊道機械性質高溫強度氯化
外文關鍵詞: Aluminum alloy fillers, Weld bead, Mechanical properties, High temperature tensile strength, Chlorination
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎢極氣體保護焊接(Tungsten Inert Gas Welding, TIG)是一種常應用在鋁合金材料間之焊接技術,有操作方便焊接速度快等優點,所以廣泛應用於焊接工業,因為現行商業鋁合金焊條如4043、5356在焊接較高強度工件如6061、7075後,焊道強度與原始被焊接材差距較大,故本實驗設計兩種鋁合金焊條,以評估對應焊道特性。本研究第一部分為探討6069改質之高鎂矽銅型添加鋁合金焊條(MSC),希望藉由焊條本身較高強度,以及和6XXX系鋁合金較匹配之熱處理條件,以取代現行通用鋁合金焊條,且為了擴展鋁合金焊條應用領域,後續針對其在不同溫度下,以及浸泡食鹽水後進行拉伸性質分析。第二部分為探討改質自鑄造材A356之高矽銅鎂添加型鋁合金(SCM),因為高矽可以增加其流動性,有利焊接時滲透力,高銅則能達到強化效果,希望能夠應用在較特殊焊接環境,如船級等需要雙邊焊接工件,後續亦針對其在不同溫度下以及浸泡食鹽水後進行拉伸性質分析,並綜合檢討相關材料應用機制。
    第一部分實驗結果顯示:鎂矽銅鋁合金焊道(MSC)在經過固溶化及人工時效熱處理後,能夠有效消除焊接熔融後存在之樹枝狀晶,第二強化相亦有效固溶至基地中,使得焊道拉伸強度達到250MPa,超越現行通用鋁合金焊條焊接後焊道強度。
    第二部分矽銅鎂鋁合金(SCM)添加之焊道在經過固溶化及人工時效熱處理後,焊接熔融後樹枝狀晶並未完全被消除,可是拉伸強度已超過310MPa,接近原始被焊接之6061基板,後續高溫拉伸機械性質在到達240°C時仍可保有大於200MPa拉伸強度;在浸泡食鹽水實驗中,浸泡七天後亦可維持其強度。
    綜合兩部份鎂矽銅鋁合金(MSC)以及矽銅鎂鋁合金(SCM)焊道研究,兩者在焊接後經過固溶化以及人工時效熱處理,拉伸強度皆優於現行通用4043及5356鋁合金,另外,焊道的高溫性質與耐氯阻抗都呈現可用性,相關成果能夠幫助鋁合金焊條之開發應用。

    Tungsten inert gas welding(TIG) is a common welding technique used in aluminum alloys. It has advantages such as short operation time, and easy process. However, the tensile strength of commonly used fillers AA5356 and AA4043 don’t match some aluminum alloys like AA6061 and AA7075. The tensile strength in welding bead will decrease by almost 50% after welded with AA5356 or AA4043 fillers. To solve this issue, two kinds of aluminum alloy were used as filler and welded with AA6061 plate in this research.
    The first filler is aluminum alloy added with higher Mg, Si, Cu (modified from AA6069). It has better mechanical properties than AA6061. Moreover, after T4/T6 heat treatment (570°C, 0.5 h- 190°C, 6 h), its tensile strength will up to 400 MPa which is higher than filler AA6061. This new filler has potential to replace the commercially used filler. The second filler is aluminum alloy added with higher Si, Cu, Mg (modified from A356). It contains 8.6 wt. % Si and consequently it has high fluidity and low shrinkage in welding applications. After T4/T6 heat treatment (490°C, 6 h- 170°C, 6 h), its tensile strength will reach 370MPa. This new filler can still used in some unique working places like ships because it can weld in double side.
    According to the results of the experiments, the welding bead of first filler (with higher Mg, Si, Cu) has 250 MPa in UTS. On the other hand, the welding bead of second filler (with higher Si, Cu, Mg) has up to 310MPa in UTS. Both of them shows better mechanical properties than welding bead made with AA5356 or AA4043. Besides, the second filler remains its tensile strength in 180°C and 240°C. After 7 days in satuated salt water, the UTS can still up to 250MPa.

    目錄 目錄 XI 第一章 前言(1) 第二章 文獻回顧(3) 2-1鎢極氣體保護電弧焊(TIG welding)(3) 2-2熔化極氣體保護電弧焊(MIG/MAG welding)(4) 2-3 Al-Mg-Si系鋁合金(4) 2-3-1 Al-Mg-Si系鋁合金介紹(4) 2-3-2 Al-Mg-Si系列合金析出機制(5) 2-3-3 Al-Mg-Si合金添加元素效應(6) 2-4 Al-Si-Cu系鋁合金(8) 2-4-1 Al-Si-Cu系鋁合金介紹(8) 2-4-2 Al-Si-Cu系鋁合金析出機制(8) 2-4-3 Al-Si-Cu合金添加元素效應(9) 2-5熱處理效應(10) 2-5-1 MSC鋁合金熱處理效應(11) 2-5-2 SCM鋁合金熱處理效應(11) 2-6研究目的(12) 第三章 實驗步驟與方法(19) 3-1材料準備(19) 3-1-1 Al-Mg-Si-Cu (MSC)鋁合金焊條微觀組織和拉伸測試(19) 3-1-2 Al-Mg-Si-Cu (MSC)鋁合金焊條對6061板材TIG焊接(20) 3-1-3 Al-Si-Cu-Mg (SCM)鋁合金焊條微觀組織及拉伸測試(20) 3-1-4 Al-Si-Cu-Mg (SCM)鋁合金焊條對6061板材TIG焊接(21) 3-1-5 熱處理條件(21) 3-2 Al合金焊道分析(22) 3-2-1組織演變分析(22) 3-2-2微觀硬度分布解析(22) 3-2-3相解析(23) 3-2-4拉伸試片製備及拉伸性質測試(23) 3-2-5拉伸破斷面及次表面觀察(24) 3-2-6高溫拉伸與鹽水浸泡後拉伸(24) 3-2-7鹽水浸泡試驗條件(24) 第四章 實驗結果與討論(31) 4-1 Mg-Si-Cu (MSC)鋁焊條與焊道分析(31) 4-1-1鋁焊條微觀組織特性分析(31) 4-1-2鋁焊條拉伸性質(31) 4-1-3焊道微觀組織特性分析(31) 4-1-4第二相組成與分率調查(32) 4-1-5拉伸性質與微硬度分佈(34) 4-1-6拉伸破斷特徵與機制(34) 4-1-7 MSC焊道高溫拉伸測試(35) 4-1-8 MSC焊道鹽水浸泡實驗(35) 4-2 Si-Cu-Mg (SCM)鋁焊條與焊道分析(36) 4-2-1鋁焊條微觀組織特性分析(36) 4-2-2鋁焊條拉伸性質分析(36) 4-2-3焊道微觀組織特性分析(36) 4-2-4第二相組成與分率調查(37) 4-2-5 SCM焊道拉伸性質與微硬度分佈(39) 4-2-6拉伸破斷特徵與機制(40) 4-2-7高溫拉伸測試(40) 4-2-8 SCM焊道鹽水浸泡實驗(41) 第五章 結論(95) 參考文獻(97)

    1. L. Jiangwei, K. Sindo, “Susceptibility of ternary aluminum alloys to cracking during solidification”, Acta Materialia, pp.513-523, 2017.
    2. K. Weman, “Welding Process Handbook”, pp.63-69, 75-97, 2012.
    3. ASM International Handbook Committee, “Properties and selection: nonferrous alloys and special-purpose materials” pp.51, 1990.
    4. W. H. Cubberly, H. Baker, D. Benjamin, P. M. Unterweiser, C. W. Kirkpatrick, V. Knoll, and K. Nieman, “Properties and selection: nonferrous alloys and special-purpose materials”, American Society for Metals Handbook, 2, pp.118-119, 1986.
    5. J. Zhang, Z. Fan, Y. Q. Wang, B. L. Zhou, “Equilibrium pseudobinary Al-Mg2Si phase diagram”, Materials science and technology, pp.494-496, 2001.
    6. S. E. Camero, G. Gonzalez, “Effect of 0.1% vanadium addition on precipitation behavior and mechanical properties of Al-6063 commercial alloy”, Journal of material science, pp.7361-7373, 2006.
    7. Y. J. Meng, Z. Zhao, and Y. Zuo, ”Effect of vanadium on the microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr-Ti alloy of 6XXX series”, pp.102-111, 2013.
    8. L. Zhen, W.D. FEI, S. Kang, H. Kim,“Precipitation behaviour of Al-Mg-Si alloys with high silicon content”, Journal of Materials Science, 32, pp.1898-1902, 1997.
    9. M. Murayama, K. Hono,”Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys”, Acta materialia, pp.1537-1548, 1999.
    10. G. Mrówka-Nowotnik,J. Sieniawski, “Influence of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys”, Journal of Materials Processing Technology, pp.367-372, 2005.
    11. J. E. Hatch, “Aluminum: properties and physical metallurgy”, American Society for Metals, pp.224-240, 1984.
    12. G. E. Totten and D. S. Mackenzie, “Handbook of aluminum-physical metallurgy and process”, Metal Dekker Inc., pp.168-185, 2003.
    13. L. Zhen, W.D. FEI, S. Kang, H. Kim,“Precipitation behaviour of Al-Mg-Si alloys with high silicon content”, Journal of Materials Science, 32, pp.1895, 1997.
    14. F. H. Samuel, “Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al–Si–Cu–Mg (319) alloys during solution heat treatment”, Journal of Materials Science, pp.2283-2297, 1998.
    15. N. A. Belov, A. Koltsov, D. G. Eskin, “Al-Cu-Mg-Si phase diagram in the range of Al Cu alloys”, Material Science Forum, 2002.
    16. E. Totten George, ”Handbook of aluminum volume 1: physical metallurgy and processes”, pp.894, 2003
    17. R. A. Jeniski Jr., “Effects of Cr addition on the microstructure and mechanical behavior of 6061-T6 continuously cast and rolled redraw rod”, Materials Science and Engineering A, 237, pp.52-64, 1997.
    18. W. Yuan, Z. Liang, “Effect of Zr addition on properties of Al–Mg–Si aluminum alloy used for all aluminum alloy conductor”, Materials & Design, pp. 4195-4200, 2011.
    19. P. Sepehrband, R. Mahmudi, F. Khomamizadeh, “Effect of Zr addition on the aging behavior of A319 aluminum cast alloy”, Scripta materialia, pp.253-257, 2005.
    20. Y. Meng, J. Cui, Z. Zhao, L. He,”Effect of Zr on microstructure and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting”, Material Characterization, pp.138-148, 2014.
    21. J. E. Hatch, “Aluminum: properties and physical metallurgy”, American Society for Metals, pp.47-51, 1984.
    A. R. Farkoosh, M. Javidani, M. Hoseini, D. Larouche,M. Pekguleryuz,”Phase formation in as-solidified and heat-treated Al–Si–Cu–Mg–Ni alloys: thermodynamic assessment and experimental investigation for alloy design”, Journal of Alloys and Compounds, pp.551, 596-606.
    22. 張家源,「熱處理製程對6069鋁合金微觀組織與拉伸機械性質之影響」,國立成功大學材料科學及工程學系,碩士論文,2016年。
    23. A. Costa, Thiago, Marcelino Dias, G. Gomes Laercia, L. Rocha Otavio,"Effect of solution time in T6 heat treatment on microstructure and hardness of a directionally solidified Al–Si–Cu alloy",Journal of Alloys and Compounds, pp.485-494, 2016
    24. A. M. Samuel, J. Gauthier, F. H. Samuel,”Microstructural aspects of the dissolution and melting of Al2Cu phase in Al-Si alloys during solution heat treatment”, Metallurgical and Materials Transactions, pp.1785-1798, 1996.
    25. F. Fadaeifard, K. A. Matori, F. Garavi, M. Al-Falahi, G. V. Sarrigani,"Effect of post weld heat treatment on microstructure and mechanical properties of gas tungsten arc welded AA6061-T6 alloy", Transactions of Nonferrous Metals Society of China, pp.3102-3114, 2016.
    林佳緯,「新型應變誘發熔融激化製程下Al-Mg-Si合金之微觀組織演變、機械性質以及沖蝕磨耗特性研究」,國立成功大學材料科學及工程學系,博士論文,2016年。

    下載圖示 校內:2024-07-29公開
    校外:2024-07-29公開
    QR CODE