| 研究生: |
王仁磐 Wang, Jen-Pan |
|---|---|
| 論文名稱: |
奈米級互補式金氧半元件效能提升之研究與極大型積體電路銅導線技術之最佳化 Performance Enhancement of Nanoscale CMOSFET and Process Optimization of Copper Interconnection for ULSI Technology |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 接觸點蝕刻停止膜 、應力矽 、表面晶格方向 、全面應力 、局部應力 、應力誘發空洞 、電子遷移 、銅雙鑲嵌金屬銅導線 、通道晶格方向 |
| 外文關鍵詞: | IDDQ (Idd at quiescent state), channel orientation, surface orientation, Cu dual damascene interconnect, electromigration (EM), Contact-etch–stop layer (CESL), stress-induced voiding (SIV), global strain, Strained silicon, local strain |
| 相關次數: | 點閱:93 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要包括兩部份: (1) 利用晶格應變技術提昇奈米元件的效能; (2) 極大型積體電路(ULSI)中銅製程技術的最佳化以改善銅導線可靠度。
首先,在本論文中針對不同矽晶格切變應力技術包括全面切變應力技術與局部切變應力技術,甚至基板晶格方向包含面晶格方向與元件通道晶格方向,對元件所產生的優劣特性,有深入的探討。
在本論文中一種新穎製程切變應力技術結合伸展接觸點蝕刻停止膜(tensile CESL)與 <100> 元件通道晶格方向,所產生的應力已成功地同時提升了元件長度與寬度分別為80奈米與0.6微米N型(NMOS)與P型(PMOS)金氧半元件的驅動電流效能分別達 11% 與 35% 之譜。在1.2伏特操作電壓下, 互補式金氧半元件的驅動電流高達 917與436微安培/微米。同樣地,N型(NMOS)與P型(PMOS)金氧半元件的窄通道與反窄通道效應都被有效地壓制。相當優良的閘延遲(gate delay) 與靜態電流(IDDQ) 也都有效地被提昇,閘延遲與靜態電流分別從反向環震盪器(inverter ring oscillator)與微處理器得到高達16%與33%的改善,這是相當正向的成果。
第二部份,將探討銅導線在極大型積體電路中的可靠度,包含銅導線的介電層(IMD),銅阻絕層(Barrier layer),銅介電覆蓋層(dielectric capping layer)的效應以及影響銅導線可靠度的理論原理,這些將陳述於本論文中。除此之外,銅雙鑲嵌金屬銅導線表面的清潔對於銅導線電子遷移(Electromigration)與應力誘發空洞(Stress-induced voiding)的影響。在銅擴散阻擋層金屬沉積前,傳統上常利用氬離子撞擊是用來清潔銅表面。較高的偏壓功耗(bias poser)和更短的清潔時間表現出顯著的低連接電阻(via resistance)和銅可靠性效果。此外,導線連接直徑(via diameter) 影響銅電子遷移(stressmigration, SM)也在本論文中被探索。最佳化的銅表面清洗製程將被用來改善電子遷移(Electromigration)與應力誘發空洞(Stress-induced voiding)。氬離子偏壓功耗(bias power)應保持盡可能高但又不能太高,以避免傷害下層的金屬導線,而清潔時間應盡可能短,但長到足以清潔Via底部。隨著極大型積體電路中銅導線製程技術繼續縮小,為了提高產品良率和銅導線可靠性,銅導線表面的清潔製程也將變得越來越重要。
This dissertation includes two parts for nanometer scale CMOSFET device and ULSI technology studying: (1) nano-scale MOSFET enhancement by strained silicon techniques and (2) the process optimization for Cu interconnect reliability.
Firstly, varied device enhancement technology including strained silicon techniques, like global strain and local strain, and substrate orientation, for example of substrate surface orientation and channel orientation, are detailed studied for its pros and cons on device performance.
A novel hybrid process-induced strain techniques by using tensile contact-etch-stop layer (CESL) along <100>-channel direction on (100) surface orientation wafer has demonstrated 11% and 35% driving current enhancement for both bulk NMOS and PMOS simultaneously at gate length/width 80nm/0.6mm. Superior current driving as high as 917 mA/mm and 436 mA/mm for CMOS respectively is achieved at 1.7 nm gate oxide, 80 nm gate length and operation voltage 1.2V. Both narrow width effect (NWE) and reverse narrow width effect (RNWE) are significantly suppressed for PMOSFET and NMOSFET. Excellent gate delay and IDDQ are also improved up to 16% and 33% respectively from inverter ring oscillator (RO) and one microprocessor.
Secondly, the reliability of Cu interconnection in ULSI technology is studied in detail including IMD, Cu barrier layer, Cu dielectric capping layer and electromigration mechanism. In the following, the effects of surface clean process on stressvoiding (SV) and electromigration (EM) of Cu dual damascene metallization are studied. Prior to the deposition of copper diffusion barrier metal, conventional argon bombardment is used to clean Cu surface. Higher pre-clean bias-power and shorter pre-clean time demonstrate remarkable low via resistance and excellent Cu reliability performance. Also, the via diameter effect to Cu stressmigration (SM) is explored. A superior Cu pre-cleaning process condition is developed to improve Cu stress-induced voiding (SIV) and electromigration (EM). The pre-clean bias power of argon plasma should be kept as high as possible but not too high to avoid damaging underlying metal, while the re-sputtering clean time should keep as short as possible but sufficiently long in order to clean via bottoms. To improve ULSI yield and reliability of Cu damascene metallization, the cleaning process of Cu surface becomes more and more critical as CMOS technology continues shrinking
[1.1] Scott E. Thompson, Mark Armstrong, Chis Auth, Mohsen Alavi, Mark Buehler, Robert Chau, Steve Cea, Tahir Ghani, Glenn Glass, Thomas Hoffman, Chia-Hong Jan, Chis Kenyon, Jason Klaus, Kelly Kuhn, Zhiyong Ma, Brian Mcintyre, Kaizad Mistry, Anand Murthy, Borna Obradovic, Ramune Nagisetty, Phi Nguyen, Sam Sivakumar, Reaz Shaheed, Lucian Shifren, Bruce Tufts, Sunit Tyagi, Mark Bohr, and Youssef El-Mansy, “A 90-nm Logic Technology Featuring Strained-Silicon”, IEEE Trans. Electron Devices, vol. 51, No.11, pp. 1790-1797, 2004.
[1.2] Scott Thompson, Paul Packan, and Mark Bohr, “MOS Scaling: Transistor Challenges for the 21st Century”, Intel Technology Journal Q3’98.
[1.3] Y.Taur, “CMOS Design near the limit of Scaling”, IBM Journal of research and development, vol. 46, No. 2/3, pp. 213-222, 2002.
[1.4] David J. Frank, Robert H. Dennard, Edward Nowak, Paul. M. Solomon, Yuan Taur, and Hon-Sum Philip Wong, “Device Scaling Limits of Si MOSFETs and Their Application Dependencies”, Proc. of IEEE, Vol. 89, no. 3, 2001.
[1.5] G.J.Hu and R.H. Bruce, ”Design tradeoffs between surface and buried-channel FET’s”, IEEE Trans. Electron Devices, vol. ED-32, pp. 584-588, 1985.
[1.6] K.Rim, S.Koester, M. Hargrove, J.Chu, P.M.Mooney, J.Ott, T.Kanarsky, P. Ronsheim, M.Ieong, A.Grill, and H.-S.P.Wong, “Strained Si NMOSFETs for High Performance CMOS Technology”, VLSI Symp. pp. 59-60, 2001.
[1.7] T. Matsumoto, S.Maeda, H.Dang, T.Uchida, K.Ota, and Y.Hirano et al, “Novel SOI Wafer Engineering using Low Stress and High Mobility CMOSFET with <100>-Channel for enhanced RF/Analog applications”, IEDM Tech. Digest, pp.663-666, 2002.
[1.8] C.H.Ge, C.C. Lin, C.H. Ko, C.C. and Huang et al., “Process-Strained Si(PSS) CMOS technology Featuring 3D Strain Engineering”, IEDM Tech. Digest, pp.73-76, 2003.
[1.9] R.A.Bianchi, G.Bouche, and O.Roux-dit-Buisson, ”Accurate Modeling of Trench Isoaltion Inducted Mechanical Stress effects on MOSFET Electrical Performance”, IEDM Tech. Digest, pp117-120, 2002.
[1.10] A.Locheefeld, and Dimi A.Antoniadis, “Investigating the Relationship Between Electron Mobility and Velocity in Deeply Scaled NMOS via Mechanical Stress”, IEEE Trans. Electron Device Letters, vol.22, pp.591-593, 2001.
[1.11] Shinya Ito, Hiroaki Namba, Kensuke Yamaguchi, Tsuyoshi Hirata, Koichi Ando, Shin Koyama, Shunichiro Kuroki, Nobuyuki Ikezawa, Tatsuya Suzuki, Takehiro Saitoh, and Tadahiko Horiuchi, “ Mechanical Stress effect of Etch-Stop Nitride an dits Impact on Deep Submicron Transistor Design”, IEDM Tech. Digest, p.247-250, 2001.
[1.12] S. Thompson, N.Anand, C. Auth, and B.Arcot, et al., ”A 90nm Logic Technology Featuring 50nm Strained Silocon Channel Transistors, 7 Layers of Cu Interconnect, Low k ILD, and 1um2 SRAM Cell”, IEDM Tech. Digest, pp.61-64, 2002.
[1.13] A. Shimizu, K.Hachimine, N.Ohki, and M.Kouguchi et al., “Local Mechanical-Stress Control (LMC): A new Technique for CMOS-Performance Enhancement”, IEDM Tech. Digest, pp.433-436, 2001.
[1.14] M. Shima, T.Ueno, T. Kumise, H. Shido, Y.Sakuma, and Nakamura, “<100> Channel Strained-SiGe p-MOSFET with Enhanced Hole Mobility and Low parasitic Resistance”, IEDM Tech. Digest, pp.94-95, 2002.
[1.15] K. Rim, Judy L. Hoyt, and James F. Gibbons, ”Transcondutance Enhancement in Deep Submicron Strained-Si n-MOSFETs”, IEDM Tech. Digest, pp.707-710, 1998.
[1.16] K. Rim, Judy L. Hoyt,and James F. Gibbons, ”Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET’s”, IEEE Trans. Electron Devices, vol. 47, pp. 1406-1415, 2000.
[2.1] Nidhi Mohta and Scott E. Thompson, “Mobility Enhancement- the Next Vector to Extend Moore’s Law”, IEEE Citcuit and Device Magazine, pp. 18-23, Sep. 2005.
[2.2] Shin-ichi Takagi, Judy L. Hoyt, Jeffrey J. Welser, and James F. Gibbons, “Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal–oxide–semiconductor field-effect transistors”, J. Appl. Phys., vol. 80, no. 3, pp. 1567–1577, Aug. 1996.
[2.3] C. Zhi-Yuan, M.T. Currie, C.W. Leitz, G. Taraschi, E.A. Fitzgerald, J.L. Hoyt, and D.A. Antoniadis, “Electron mobility enhancement in strained-Si n-MOSFETs fabricated on SiGe-on-insulator (SGOI) substrates,” IEEE Electron Device Lett., vol. 22, pp. 321–323, July 2001.
[2.4] D.K. Nayak and S.K. Chun, “Low-field hole mobility of strained Si on (100) Si1-xGex substrate,” Appl. Phys. Lett., vol. 64, pp. 2514–2516, Jan. 1994.
[2.5] D. Zhang, B.Y. Nguyen, T. White, B. Goolsby, T. Nguyen, V. Dhandapani, J. Hildreth, M. Foisy, V. Adams, Y. Shiho, A. Thean, D. Theodore, M. Canonico, S. Zollner, S. Bagchi, S. Murphy, R. Rai, J. Jiang, M. Jahanbani, R. Noble, M. Zavala, R. Cotton, D. Eades, S. Parsons, P. Montgomery, A. Martinez, B. Winstead, M. Mendicino, J. Cheek, J. Liu, P. Grudowski, N. Ranami, P. Tomasini, C. Arena, C. Werkhoven, H. Kirby, C.H. Chang, C.T. Lin, H. C. Tuan, Y. C. See, S. Venkatesan, V. Kolagunta, N. Cave, and J. Mogab,“Embedded SiGe S/D PMOS on thin body SOI substrate with drive current enhancement,” in VLSI Technology Symp., 2005, pp. 26–27.
[2.6] Q. Ouyang, M. Yang, J. Holt, S. Panda, H. Chen, H. Utomo, M. Fischetti, N. Rovedo, J. Li, N. Klymko, H. Wildman, T. Kanarsky, G. Costrini, D.M. Fried, A. Bryant, J.A. Ott, M. Ieong, and C.-Y. Sung, “Investigation of CMOS devices with embedded SiGe source/drain on hybrid orientation substrates,” in VLSI Technology Symp., 2005, pp. 28–29.
[2.7] C.Y.-P Chao and S.L. Chuang, “Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells,” Phys. Rev. B, vol. 46, no. 7, pp. 4110–4122, Aug. 1992.
[2.8] K. Rim, J. Chu, H. Chen*, K.A. Jenkins, T. Kanarsky*, K. Lee, A. Mocuta*, H. Zhu*, R. Roy, J. Newbury, J. Ott. K. Petrarca*, P. Mooney, D. Lacey, S. Koester, K. Chan. D. Boyd*, M. Ieong*, and H.-S. Wong., “Characteristics and Device Design of Sub-100 nm Strained Si N- and PMOSFETs”, VLSI Technology Symp., 2002, pp. 98-99.
[2.9] Lee, B.H.; Mocuta, A.; Bedell, S.; Chen, H.; Sadana, D.; Rim, K.; O'Neil, P.; Mo, R.; Chan, K.; Cabral, C.; Lavoie, C.; Mocuta, D.; Chakravarti, A.; Mitchell, R.M.; Mezzapelle, J.; Jamin, F.; Sendelbach, M.; Kermel, H.; Gribelyuk, M.; Domenicucci, A.; Jenkins, K.A.; Narasimha, S.; Ku, S.H.; Ieong, M.; Yang, I.Y.; Leobandung, E.; Agnello, P.; Haensch, W.; Welser, J., “Performance enhancement on sub-70 nm strained silicon SOI MOSFETs on ultra-thin thermally mixed strained silicon/SiGe on insulator (TM-SGOI) substrate with raised S/D”, IEDM Tech. Digest, 2002, pp. 946-948.
[2.10] K. Rim, K. Chan, L. Shi, D. Boyd, J. Ott, N. Klymko, F. Cardone, L. Tai, S. Koester, M. Cobb, D. Canaperi, B. To, E. Duch, I. Babich, R. Carmthers, P. Saunders, G. Walker, Y. Zhang, M. Steen, and M. Ieong, “Fabrication and Mobility Characteristics of Ultra-thin Strained Si Directly on Insulator (SSDOI) MOSFETs”, IEDM Tech. Digest, Dec 2003, pp. 49-52.
[2.11] R.A.Bianchi, G.Bouche, and O. Roux-dit-Buisson, “Accurate modeling of trench isolation induced mechanical stress effects on MOSFET electrical performance”, IEDM Tech. Digest, Dec 2002, pp. 117-120.
[2.12] Gregory Scott, Jeffery Lutze, Mark Rubin, Faran Nouri, and Martin Manley, “NMOS Drive Current Caused by Transistor Layout and Trench Isolation Induced Stress,” IEDM Tech. Digest, Dec 1999, pp. 827-830.
[2.13] R. M. Huang, Y. H. Lin, S. H. Tsai, C. W. Yang, E. C. Liu, Y. S. Hsieh, *Ian Cayrefourcq, C. T. Tsai and G. H. Ma, “Thermal budget optimization on Strained Silicon-On-Insulator (SSOI) CMOS”, VLSI Technology, System and Application, Apr 2008, pp. 118-119.
[2.14] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murphy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, andM. Bohr, “A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors,” IEDM Tech. Dig., 2003, pp. 978–980.
[2.15] P. R. Chidambaram, B. A. Smith, L. H. Hall, H. Bu, S. Chakravarthi, Y. Kim, A. V. Samoilov, A. T. Kim, P. J. Jones, R. B. Irwin, M. J. Kim, A. L. P. Rotondaro, C. F. Machala, and D. T. Grider, “35% drive current improvement from recessed-SiGe drain extensions on 37 nm gate length PMOS,” VLSI Symp. Tech. Dig., 2004, pp. 497–498.
[2.16] D. Zhang, B. Y. Nguyen, T. White, B. Goolsby, T. Nguyen, V. Dhandapani, J. Hildreth, M. Foisy, V. Adams, Y. Shiho, A. Thean, D. Theodore, M. Canonico, S. Zollner, S. Bagchi, S. Murphy, R. Rai, J. Jiang, M. Jahanbani, R. Noble, M. Zavala, R. Cotton, D. Eades, S. Parsons, P. Montgomery, A. Martinez, B.Winstead, M. Mendicino, J. Cheek, J. Liu, P. Grudowski, N. Ramani, P. Tomasini, C. Arena, C. Werkhoven, H. Kirby, C. H. Chang, C. T. Lin, H. C. Tuan, Y. C. See, S. Venkatesan, V. Kolagunta, N. Cave, and J. Mogab, “Embedded SiGe S/D PMOS on thin body SOI substrate with drive current enhancement,” VLSI Symp. Tech. Dig., 2005, pp. 26–27.
[2.17] L. Smith, V. Moroz, G. Eneman, P. Verheyen, F. Nouri, L. Washington, M. Jurczak, O. Penzin, D. Pramanik, and K. D. Meyer, “Exploring limits of stress-enhanced hole mobility,” IEEE Electron Device Lett., vol. 26, no. 9, pp. 652–654, Sep. 2005.
[2.18] Scott E. Thompson, Mark Armstrong, Chis Auth, Steve Cea, Robert Chau, Glenn Glass, Thomas Hoffman, Jason Klaus, Zhiyong Ma, Brian Mcintyre, Anand Murthy, Borna Obradovic, Lucian Shifren, Sam Sivakumar, Sunit Tyagi, Tahir Ghani, Kaizad Mistry, Mark Bohr, and Youssef El-Mansy, “A Logic Nanotechnology Featuring Strained-Silicon”, IEEE Electron Device Lett., vol. 25, No.4, pp. 191–193, April 2004.
[2.19] C. S. Smith, “Piezoresistive effect in germanium and silicon,” Phys. Rev., vol. 94, pp. 42–49, 1954.
[2.20] G. Dorda, “Piezoresistance in quantized conduction bands in silicon inversion layers,” J. Appl. Phys., vol. 42, pp. 2053–2060, 1971.
[2.21] M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang, and K. Rim, “Six-band k× p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness,” J. Appl. Phys., vol. 94, pp. 1079–1095, 2003.
[2.22] Shinya Ito, Hiroaki Namba, Kensuke Yamaguchi, Tsuyoshi Hirata, Koichi Ando, Shin Koyama, Shunichiro Kuroki, Nobuyuki Ikezawa, Tatsuya Suzuki, Takehiro Saitoh, and Tadahiko Horiuchi, “Mechanical Stress effect of Etch-Stop Nitride and its Impact on Deep Submicron Transistor Design,” IEDM Tech. Digest, p.247-250, 2000.
[2.23] Y. Konda, “A Graphical Representation of the Piezoresistance Coefficients in Silicon”, IEEE Electron Devices, vol. 29, No.1, pp. 64–70, 1982.
[2.24] A.Shimizu, K.Hachimine, N.Ohki, H.Ohta, M.Koguchi, Y.Nonaka, H.Sato, and F.Ootsuka, “Local Mechanical-Stress Control (LMC): A New Technique for CMOS-Performance Enhancement”, IEDM Tech. Digest, pp.433-436, 2001.
[2.25] H. S Yang, R. Malik, S. Narasimha, Y. Li, R. Divakaruni, P. Agnello, S.Allen, A. Antreasyan, J. C. Arnold, K. Bandy, M. Belyansky, A. Bonnoit, G.Bronner, V. Chan, X. Chen, Z. Chen, D. Chidambarrao, A. Chou, W. Clark, S. W. Crowder, B. Engel, H. Harifuchi, S. F. Huang, R. Jagannathan,F. F. Jamin, Y. Kohyama, H. Kuroda, C.W. Lai, H.K. Lee, W.-H Lee, E.H Lim, W. Lai, A. Mallikarjunan, K. Matsumoto, A. McKnight, J. Nayak, H.Y. Ng, S. Panda, R. Rengarajan, M. Steigerwalt, S. Subbanna, K. Subramanian, J. Sudijono, G. Sudo, S.-P. Sun, B. Tessier, Y. Toyoshima, P. Tran, R. Wise, R. Wong, I.Y. Yang, C.H. Wann, L.T. Su, M. Horstmann, Th. Feudel, A. Wei, K. Frohberg, G. Burbach, M. Gerhardt, M. Lenski, R. Stephan, K. Wieczorek, M. Schaller, H. Salz, J. Hohage, H. Ruelke, J. Klais, P. Huebler, S. Luning, R. van Bentum, G. Grasshoff, C. Schwan, E. Ehrichs, S. Goad, J. Buller, S. Krishnan, D. Greenlaw, M. Raab, and N .Kepler, “Dual stress liner for high performance sub-45 nm gate length SOI CMOS manufacturing,” Tech. Dig. IEEE Int. Electron Devices Meeting, 2004, pp. 1075–1077.
[2.26] Chien-Hao Chen, T.L. Lee, T.H. Hou, C.L. Chen, C.C. Chen, J.W. Hsu, K.L. Cheng, Y.H.Chiu, H.J, Tao, Y. Jin, C.H. Diaz, S.C. Chen, and M.S. Liang, “Stress Memorization Technique (SMT) by Selectively Strained-Nitride Capping for Sub-65nm High-Performance Strained-Si Device Application”, VLSI Symp. Tech. Digest, 2004, pp. 56–57.
[2.27] A. Eiho, T. Sanuki, E. Morifuji, T. Iwamoto, G. Sudo, K. Fukasaku, K. Ota, T. Sawada, O. Fuji, H. Nii, M. Togo, K. Ohno, K. Yoshida, H. Tsuda, T. Ito, Y. Shiozaki, N. Fuji, H. Yamazaki, M. Nakazawa, S. Iwasa, S. Muramatsu, K. Nagaoka, M. Iwai, M. Ikeda, M, Saito, H. Naruse, Y. Enomoto, Kitano, S. Yamada, K. Imai, N. Nagashima, T. Kuwata, and F. Matsuoka, “Management of Power and Performance with Stress Memorization Technique for 45nm CMOS”, VLSI Symp. Tech. Digest, 2007, pp. 218–219.
[2.28] An Steegen, Michele Stucchi, Anne Lauwers, and Karen Maex, “Silicide induced pattern density and orientation dependent transconductance in MOS transistors”, IEDM Tech. Digest, 1999, pp.497-500.
[2.29] K.C.Liu, X.Wang, E.Quinones, X.Chen, X.D.Chen, D.Kencke, B. Anantharam, R.D.Chang, S.K.Ray, S.K.Oswal, C.Y.Tu, and S.K. Banejee, “A Novel Sidewall Strained-Si channel nMOSFET”, IEDM Tech. Digest, 1999, pp.63-66.
[2.30] Leland Chang, Meikei Ieong, and Min Yang, “CMOS Circuit Performance Enhancement by Surface Orientation Optimization”, IEEE Transactions on Electron Device, Vol. 51, No. 10, 2004, pp. 1621-1627.
[2.31] Victor Chan, Ken Rim, Meikei Ieong, Sam Yang, Rajeev Malik, Young Way Teh, Min Yang, Qiqing (Christine) Ouyang, “Strain for CMOS performance Improvement”, IEEE Custom Integrated Circuit Conference, 2005, pp. 667-674.
[2.32] M. Yang, M. leong, L. Shi, K. Chan, V. Chant, A. Chout, E. Gusev, K. Jenkins, D. Boyd, Y. Ninomiya, D. Pendleton, Y. Surpris, D. Heenan, J. Ott, K. Guarini, C. D'Emic, M. Cobb, P. Mooney, B. To, N. Rovedo, J. Benedict, R. MO and H. Ng, “High Performance CMOS Fabricated on Hybrid Substrate with Different Crystal Orientations”, IEDM Tech. Digest, 2003, pp.453-456.
[2.33] M. Shima, T.Ueno, T. Kumise, H. Shido, Y.Sakuma, and Nakamura, “<100> Channel Strained-SiGe p-MOSFET with Enhanced Hole Mobility and Low parasitic Resistance”, IEDM Tech. Digest, pp.94-95, 2002.
[2.34] T. Matsumoto, S.Maeda, H.Dang, T.Uchida, K.Ota, and Y.Hirano et al, “Novel SOI Wafer Engineering using Low Stress and High Mobility CMOSFET with <100>-Channel for enhanced RF/Analog applications”, IEDM Tech. Digest, pp.663-666, 2002.
[2.35] T. Komoda, A. Oishi, T. Sanuki, K. Kasai, H. Yoshimura, K. Ohno, M. Iwai, M. Saito, F. Matsuoka, N. Nagashima and T. Noguchi, “Mobility Improvement for 45nm Node by Combination of Optimized Stress Control and Channel Orientation Design”, IEDM Tech. Digest, 2004, pp. 217-220
[2.36] Ken Uchida, Ricardo Zednik, Ching-Huang Lu, Hemanth Jagannathan, James McVittie, Paul C. McIntyre, and Yoshio Nishil, “Experimental Study of Biaxial and Uniaxial Strain Effects on Carrier Mobility in Bulk and Ultrathin-body SO1 MOSFETs”, IEDM Tech. Digest, 2004, pp. 229-232
[3.1] G. J. Hu and R.H. Bruce,”Design tradeoffs between surface and buried-channel FET’s”, IEEE Trans. Electron Devices, vol. 32, pp. 584-588, 1985.
[3.2] K.Rim, S.Koester, M. Hargrove, J.Chu, P.M.Mooney, J.Ott, T.Kanarsky, P. Ronsheim, M.Ieong, A.Grill, and H.-S.P.Wong, “Strained Si NMOSFETs for High Performance CMOS Technology”, VLSI Tech. Symp.,pp.59-60, 2001.
[3.3] J. Welser, J. L. Hoyt, S. Takagi, and J. F. Gibbons, “Strain Dependence of the Performance Enhancement in Strained-Si n-MOSFETs”, IEDM Tech. Digest, pp.373-376, 1994.
[3.4] Shin-ichi Takagi, Junji Koga and Akira Toriumi,, “Subband Structure Engineering for Performance Enhancement of Si MOSFETs”, IEDM Tech. Digest, pp.219-222, 1997.
[3.5] M. V. Fischetti, G. Gamiz, and W. Haench, “On the enhanced electron mobility in strained-silicon inversion layers,” J. Appl. Phys., vol. 92, no. 12, pp. 7320–7324, Dec. 2002.
[3.6] G. Hadjisavvas, L. Tsetseris, and S. T. Pantelides, “The Origin of Electron Mobility Enhancement in Strained MOSFETs”, IEEE Trans. Electron Device Letters, vol.28, pp.1018-1020, 2007.
[3.7] C.H.Ge, C.C. Lin, C.H. Ko, C.C. and Huang et al., “Process-Strained Si(PSS) CMOS technology Featuring 3D Strain Engineering”, IEDM Tech. Digest, pp.73-76, 2003.
[3.8] A.Locheefeld, and Dimi A.Antoniadis, “Investigating the Relationship Between Electron Mobility and Velocity in Deeply Scaled NMOS via Mechanical Stress”, IEEE Trans. Electron Device Letters, vol.22, pp.591-593, 2001.
[3.9] Shinya Ito, Hiroaki Namba, Kensuke Yamaguchi, Tsuyoshi Hirata, Koichi Ando, Shin Koyama, Shunichiro Kuroki, Nobuyuki Ikezawa, Tatsuya Suzuki, Takehiro Saitoh, and Tadahiko Horiuchi, “Mechanical Stress effect of Etch-Stop Nitride and its Impact on Deep Submicron Transistor Design”, IEDM Tech. Digest, p.247-250, 2001.
[3.10] S. Thompson, N.Anand, C. Auth, and B.Arcot, et al., ”A 90nm Logic Technology Featuring 50nm Strained Silocon Channel Transistors, 7 Layers of Cu Interconnect, Low k ILD, and 1um2 SRAM Cell”, IEDM Tech. Digest, pp.61-64, 2002.
[3.11] A. Shimizu, K.Hachimine, N.Ohki, and M.Kouguchi et al., “Local Mechanical-Stress Control (LMC): A new Technique for CMOS-Performance Enhancement”, IEDM Tech. Digest, pp.433-436, 2001.
[3.12] K. Rim, Judy L. Hoyt,and James F. Gibbons, ”Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET’s”, IEEE Trans. Electron Devices, vol. 47, pp. 1406-1415, 2000.
[3.13] Scott E. Thompson, Mark Armstrong, Chis Auth, Steve Cea, Robert Chau, Glenn Glass, Thomas Hoffman, Jason Klaus, Zhiyong Ma, Brian Mcintyre, Anand Murthy, Borna Obradovic, Lucian Shifren, Sam Sivakumar, Sunit Tyagi, Tahir Ghani, Kaizad Mistry, Mark Bohr, and Youssef El-Mansy, “A Logic Nanotechnology Featuring Strained-Silicon”, IEEE ELECTRON DEVICE LETTERS, vol. 25, NO. 4, pp. 191-193, 2004.
[3.14] Jen-Pan Wang, Yan-Kuin Su, and Jone F. Chen, “Device Enhancement Using Process-Strained-Si for sub-100-nm nMOSFET”, IEEE Trans. Electron Device, vol.53, pp.1276-1279, 2006.
[3.15] Leland Chang, Meikei Ieong, and Min Yang, “CMOS Circuit Performance Enhancement by Surface Orientation Optimization”, IEEE Trans. Electron Devices, vol. 51, pp. 1621-1627, 2004.
[3.16] Min Yang, Victor W. C. Chan, Kevin K. Chan, Leathen Shi, David M. Fried, James H. Stathis, Anthony I. Chou, Evgeni Gusev, John A. Ott, Lindsay E. Burns, Massimo V. Fischetti, and Meikei Ieong, “Hybrid-Orientation Technology (HOT): Opportunities and Challenges”, IEEE Trans. Electron Devices, VOL. 53, pp.965-978, 2006.
[3.17] M. Shima, T.Ueno, T. Kumise, H. Shido, Y.Sakuma, and Nakamura, “<100> Channel Strained-SiGe p-MOSFET with Enhanced Hole Mobility and Low parasitic Resistance”, IEDM Tech. Digest, pp.94-95, 2002.
[3.18] T. Matsumoto, S.Maeda, H.Dang, T.Uchida, K.Ota, and Y.Hirano et al, “Novel SOI Wafer Engineering using Low Stress and High Mobility CMOSFET with <100>-Channel for enhanced RF/Analog applications”, IEDM Tech. Digest, pp.663-666, 2002.
[3.19] Y. Konda, “A Graphical Representation of the Piezoresistance Coefficients in Silicon”, IEEE Transactions on Electron Devices, vol. 29, No.1, pp. 64–70, 1982.
[3.20] H. Sayama, Y. Nishida, H. Oda, T. Oishi, S. Shimizu, T. Kunikiyo, K. Sonoda, Y. Inoue, and M. Inuishi, “Effect of <100> Channel Direction for High performance SCE Immune pMOSFET with less than 0.15 mm gate length”, IEDM Tech. Digest, pp.657-660, 1999.
[3.21] Jen-Pan Wang, Yan-Kuin Su, and Jone F. Chen, “Device Enhancement by Hybrid Process Techniques: Process-Strained Silicon along <100>-Channel Orientation for Nanometer CMOSFET Technology”, IEEE Trans. Electron Devices, summit in Dec. 2008 and revised in Apr. 2009.
[4.1] M. T. Bohr,” Interconnect scaling-the real limiter to high performance ULSI”, IEEE IEDM Technical Digest, pp. 241-244, 1995.
[4.2] K. Banerjee, A. Mehrotra, A. Sangiovanni-Vincentelli, and C. Hu, “On thermal effects in deep submicron VLSI interconnects,” in Proceedings, 36th ACM Design Automation Conference, pp. 885–891, 1999.
[4.3] S. Im and K. Banerjee, “Full chip thermal analysis of planar (2-D) and vertically integrated (3-D) high performance ICs,” in IEDM Technology Digest, pp. 727–730, 2000.
[4.4] S. Rzepka, K. Banerjee, E. Meusel, and C. Hu, “Characterization of self-heating in advanced VLSI interconnect lines based on thermal finite element simulation,” IEEE Transactions on Components, Packaging and Manufacturing Technology-Part A, vol. 21, no. 3, pp. 1–6, 1998.
[4.5] D. Chen, E. Li, E. Rosenbaum, and S.-M. S. Kang, “Interconnect thermal modeling for accurate simulation of circuit timing and reliability,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, pp. 197–205, Feb. 2000.
[4.6] J. Ida, M. Yoshimaru, T. Usami, A. Ohtomo, K. Shimokawa, A. Kita, and M. Ino, “Reduction of wiring capacitance with new low dielectric SiOF interlayer film for high speed/low power sub-half micron CMOS,” in VLSI Technology Symposium, Digest of Technology Papers, pp. 59–60, 1994.
[4.7] J. R. Black, “Electromigration – A brief survey and some recent results,” IEEE Transactions on Electron Devices, vol. ED-16, pp. 338–347, 1969.
[4.8] C.-K. Hu, K. P. Rodbell, T. D. Sullivan, K. Y. Lee and D. P. Bouldin, IBM Journal of Research & Develop. 39, 465 (1995).
[4.9] Annabelle Pratt, “ Overview of the use of Copper interconnects in the semiconductor industry’, the white paper from Advanced energy Inc.
[4.10] K. N. Tu, “Recent advances on electromigration in very-large-scale- integration of interconnects”, Journal of Applied Physic, Vol 94, No. 9, 2003.
[4.11] C.-K. Hu, and J. M. E. Harper, “Copper interconnections and reliability “, Mater. Chem. Phys. Vol. 52, pp.5-16, 1998.
[4.12] H. B. Huntington and A. R. Grone, J. Phys. Chem. Solids, vol. 20, p. 76, 1961.
[4.13] P.S. Ho and T.Kwok, “Electromigration in Metals”, Rep. Prog. Phys. 52, 301-348 (1989).
[4.14] C.-K. Hu, L. Gignac, S. G. Malhotra, R. Rosenberg, and S. Boettcher, “Mechanisms for very long electromigration lifetime in dual-damascene Cu interconnections “, Appl. Phys. Lett., vol. 78, pp. 904-906, 2001.
[4.15] E. Liniger, L. Gignac, C.-K. Hu, and S. Kaldor, “In situ study of void growth kinetics in electroplated Cu lines”, J. Appl. Phys., vol. 92, p. 1803, 2002.
[4.16] M. W. Lane, E. G. Liniger, and J. R. Lloyd, “Relationship between interfacial adhesion and electromigration in Cu metallization”, J. Appl. Phys., vol. 93, pp.1417-1421, 2003.
[4.17] M. L. Dreyer and C. J. Varker, “Electromigraton activation energy dependence on AlCu interconnect linewidth and microstructure”, Appl. Phys. Lett., vol. 60, p. 1860, 1992.
[4.18] J. M. Pierce and M. E. Thomas, “Electromigration in aluminum conductors which are chains of single crystals”, Appl. Phys. Lett., vol. 39, p. 165, 1981.
[4.19] C.-K. Hu, “Electromigration failure mechanisms in bamboo-grained Al(Cu) interconnections”, Thin Solid Films, vol. 260, pp. 124-134, 1995.
[4.20] C.-K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino, C. Sambucetti, A. Domenicucci, X. Chen, and A. K. Stamper, “Reduced electromigration of Cu wires by surface coating “, Appl. Phys. Lett., vol. 81, pp. 1782-1784, 2002.
[4.21] I. A. Blech and C. Herring, “Stress generation by electromigration”,`Appl. Phys. Lett., vol. 29, pp. 131-133, 1976.
[4.22] I. A. Blech, Acta Mater., vol. 46, p. 3717, 1998.
[4.23] S. Q. Hong, C. M. Comrie, S. W. Russell, and J. W. Mayer, “Phase formation in Cu–Si and Cu–Ge,” J. Appl. Phys., vol. 70, pp. 3655–3660, 1991.
[4.24] S. H. Corn, J. L. Falconer, and A. W. Czanderna, “The copper–silicon interface: Composition and interdiffusion,” J. Vac. Sci. Technol. A, vol. 6, pp. 1012–1017, 1998.
[4.25] K. W. Chang, T. H. Yeh, I. C. Deng, and C. W. Shih, “Amorphous like chemical vapor deposited tungsten diffusion barrier for copper metallization and effects of nitrogen addition,” J. Appl. Phys., vol. 82, pp. 1469–1476, 1997.
[4.26] M. T. Wang, Y. C. Lin, and M. C. Chen, “Barrier properties of very thin Ta and TaN layers against copper diffusion,” J. Electrochem. Soc., vol. 145, pp. 2538–2544, 1998.
[4.27] E. Ivanov, “Evaluation of tantalum silicide sputtering target materials for amorphous Ta-Si-N diffusion barrier for Cu metallization,” Thin Solid Films, vol. 332, pp. 325–328, 1998.
[4.28] J. O. Olowolafe, C. J. Mogab, R. B. Gregory, and M. Kottke, “Interdiffusions in Cu-reactive-ion-sputtered TiN, Cu chemical vapor deposited TiN, Cu–TaN and TaN–Cu–TaN thin-film structures: Low temperature diffusion analyses,” J. Appl. Phys., vol. 72, pp. 4099–4107, 1992.
[4.29] O. Adciello, S. Chevacaroenkul, M. S. Ameen, and J. Duarte, “Controlled ion beam sputter deposition of W–Cu–W layered films for microelectronic applications,” J. Vac. Sci. Technol. A, vol. 9, pp. 625–632, 1991.
[4.30] Jung Woo Pyun, Xia Lu, Jayhoon Chung, Sean Yoon, Paul S.Ho, Neil Henis, Kyle Neuman, Larry Smith, and Klaus Pfeifer,” Effect of barrier thickness on electromigration reliability of Cu/porous low k interconnects”, Appl. Phys. Lett., vol. 87, pp. 0610907-3, 2005.
[4.31] J. Lloyd et al., '"Relationship between Interfacial Adhesion and Electromigration in Cu Metallization", proceedings IRW 2002.
[4.32] S. Parikh, "Defcct and Electromigration Characterization of Two level Copper Interconnect", proceedings IlTC 2001.
[4.33] R. Gonella, "Cu quality and interconnect environment impact on Cu Dual Damascene clectromigration performances", 2002 SEMI, Tutorial at the SEMICON Europe.
[4.34] C. Goldberg, "Interface Reliability of High Perfvrmance Interconnects",in proceedings of the Advanced Metallization Conference 2002.
[4.35] J.A. Cunningham, "Using electrochemistry to improve copper interconnects", Semiconductor International May/2000.
[4.36] Baozhen Li, Timothy D. Sullivan, and Tom C. Lee, “Line Depletion Electromigration Characterization of Cu Interconnects”, IEEE Transactions on Electron Devices, vol. 4, pp. 80–85, 2004.
[4.37] Changsup Ryu, Kee-Won Kwon, Alvin L. S. Loke, Haebum Lee, Takeshi Nogami, Valery M. Dubin, Rahim A. Kavari, Gary W. Ray, and S. Simon Wong, “Microstructure and Reliability of Copper Interconnects”, IEEE Transactions on Electron Devices, vol. 46, pp. 1113–1120, 1999.
[4.38] Kaustav Banerjee and Amit Mehrotra, “Coupled Analysis of Electromigration Reliability and Performance in ULSI Signal Nets”, IEEE ICCAD, Digest of Technical Papers, 2001.
[5.1] Jen-Pan Wamg, Yan-Kuin Su, and Jone F. Chen, “Influence of Surface Cleaning on Stressvoiding and Electromigration of Cu Damascene Interconnection,” IEEE International Reliability Physic Symposium, pp 646-647, 2007.
[5.2] A. Von Galsow, A.H. Fischer, D. Bunel, G. Friesez, A. Hausmann, Heitzsch, M. Hommel, J. Kriz, S.Penka, P. Raffin,C. Robin, H.-P. Sperlich, F.Ungar, and A.E.Zitzclsbcrg, “The Influence of the SiN Cap Process on the Electromigration and Stressvoiding Performance of Dual Damascene Cu Interconnects,” IEEE International Reliability Physic Symposium, pp 146-150, 2003.
[5.3] C.-K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino, and C. Sambucetti, A. Domenicucci and X. Chen, and A. K. Stamper, “Reduced electromigration of Cu wires by surface coating,” Appl. Phys. Lett., Vol 81, no. 10, pp. 1782-1784, Sep. 2002.
[5.4] Ki-Don Lee and Paul S. Ho,” Statistical Study for Electromigration Reliability in Dual-Damascene Cu Interconnects,” IEEE Trans. Devices and Material Reliability, vol. 4, No. 2, pp. 237-245, 2004.
[5.5] M. T. Wang, Y. C. Lin, and M. C. Chen, “Barrier properties of very thin Ta and TaN layers against copper diffusion,” J. Electrochem. Soc., vol.145, pp. 2538–2544, 1998.
[5.6] J. O. Olowolafe, C. J. Mogab, R. B. Gregory, and M. Kottke, “Interdiffusions in Cu-reactive-ion-sputtered TiN, Cu-chemical-vapor-deposited TiN, Cu–TaN and TaN–Cu–TaN thin-film structures: Low temperature diffusion analyses,” J. Appl. Phys., vol. 72, pp. 4099–4107, 1992.
[5.7] O. Adciello, S. Chevacaroenkul, M. S. Ameen, and J. Duarte, “Controlled ion beam sputter deposition of W–Cu–W layered films for microelectronic applications,” J. Vac. Sci. Technol. A, vol. 9, pp. 625–632, 1991.
[5.8] M. T. Wang, Y. C. Lin, and M. C. Chen, “Barrier properties of very thin Ta and TaN layers against copper diffusion,” J. Electrochem. Soc., vol.145, pp. 2538–2544, 1998.
[5.9] D. H. Zhang, S. W. Loh, C. Y. Li, Rong Liu, and Andrew T. S. Wee, “Effect of a Thin Ionized-Metal-Plasma Deposited Cu Layer on the Properties and Thermal Stability of Cu–TaN–SiO2–Si Structures,” IEEE Trans. Devices and Material Reliability, vol. 1, No. 4, pp. 174-178, 2001.
[5.10] E. Ivanov, “Evaluation of tantalum silicide sputtering target materials for amorphous Ta-Si-N diffusion barrier for Cu metallization,” Thin Solid Films, vol. 332, pp. 325–328, 1998.
[5.11] M. R. Baklanov, D. G. Shamiryan, Zs. To kei, G. P. Beyer, T. Conard, S. Vanhaelemeersch, and K. Maex, “Characterization of Cu surface cleaning by hydrogen plasma,” J. Vac. Sci. Technol. B, Vol 19, No. 4, Jul/Aug 2001.
[5.12] Zs. Tkei, F. Lanckmans, G..Van den bosch, M.Van Hove, K.Maex, H.Bender, S.Hens, and J.Van Landuyt, “Reliability of Copper Dual Damascene Infulced by Pre-clean,” IEEE, Proceedings of 9th IPFA, pp. 118-123, 2002.
[5.13] H. Okabayashi, Mater. Sci. Eng., R Rep. 11 (1993) 191.
[5.14] Zhenghao Gan, Wei Shao, S.G. Mhaisalkar, Zhong Chen, and Hongyu Li, “The influence of temperature and dielectric materials on stress induced voiding in Cu dual damascene interconnects,” Thin Solid Films, vol. 504, pp. 161–165, 2006.
[5.15] James R. Black, “Electromigration Failure Modes in Aluminum Metalization for Semiconductor Devices,” Proc. of IEEE vol. 57, pp.1587-1594, 1969.
[5.16] Jen-Pan Wang, Yan-Kuin Su, and Jone F. Chen, “Effects of Surface Cleaning on Stressvoiding and Electromigration of Cu damascene Interconnection”, IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, Vol. 8, pp.210-215, 2008