簡易檢索 / 詳目顯示

研究生: 莊筠兒
Chuang, Yun-Erh
論文名稱: 單核球與T細胞在登革健康感染者再次受到登革病毒感染之功能
Functions of monocytes and T cells from previous Dengue Virus infected subjects upon re-infection
指導教授: 彭貴春
Perng, Guey-Chuen
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 77
中文關鍵詞: 登革病毒登革健康感染者單核球T細胞γ型干擾素
外文關鍵詞: Dengue virus, monocytes, T cells, previously DENV-exposed subjects, interferon-gamma
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革病毒主要分布在熱帶與亞熱帶地區,現已在超過100多個國家流行。根據世界衛生組織的資料統計,估計全球每年約將近3.9億人口感染登革病毒。受到登革病毒感染的人們可分為有症狀及無症狀者,有症狀的病人會出現典型的發燒、頭痛、肌肉痛等症狀,並且有少數的病人會發展成登革重症,包含登革出血熱、休克等等;而根據統計,有超過75%的人被感染後是無症狀者(登革健康感染者),因此需透過實驗室診斷,才會知道自己曾經感染過登革病毒。並且登革健康感染者會成為病毒的攜帶者,特別在病毒血症期間更容易傳播病毒。由先前實驗室研究得知,登革健康感染者的單核球對於登革病毒的清除能力較健康人來得差,並且發現其單核球再次受到登革病毒感染後,傾向於釋放能招募適應性免疫細胞的訊號。因此,我們的假說是登革健康感染者再次受登革病毒感染後之單核球以及T細胞會有功能上的改變。我們收集登革疫區之健康感染者以及非登革疫區健康人的周邊血,從中分離出單核球後,進行登革病毒感染,接著了解其細胞激素與趨化因子分泌的結果;另一部分與同樣從周邊血分離出來的T細胞共培養,並利用細胞的標定蛋白與流式細胞儀來分析。CD4及CD8為T細胞的標的,CD25能標定活化型T細胞,CFSE及Ki67用於分析T細胞的增生與分裂,γ型干擾素用於分析T細胞的抗病毒功能。在單核球分泌細胞激素與趨化因子的實驗中,我們發現從登革健康感染者分離出來的單核球,其分泌腫瘤壞死因子-α以及介白素-8有輕微增加,而介白素-6以及介白素-10則輕微的減少,巨噬細胞移行抑制因子則維持相同的程度,但並無統計上的差異。代表登革健康感染者的單核球本身利用細胞激素來抗病毒的功能並沒有受到影響。此外,我們發現來自登革健康感染者的T細胞,與登革病毒再次感染後之單核球共培養後,其細胞增生的能力隨著時間有顯著的下降。然而,不管是從健康人或是登革健康感染者分離出來的單核球,在受到登革病毒感染後,並無法被誘導成抗原呈現細胞,因此T細胞分泌γ型干擾素的能力無法被啟動。後續我們加入T細胞的激活因子活化T細胞,發現T細胞的增生會隨著時間持續上升,同時也能去證明上述T細胞增生的減少,可能是受到登革病毒感染之單核球的影響。此外,隨著T細胞被激活,能觀察到T細胞分泌γ型干擾素的表現明顯增加,並且我們發現登革健康感染者的T細胞對於γ型干擾素分泌的能力有延遲的現象。因此我們進一步想知道T細胞本身的功能是否有所改變。隨後我們利用登革病毒非結構蛋白3胜肽刺激T細胞,觀察T細胞的記憶性反應。實驗結果顯示,登革健康感染者的T細胞受到登革病毒非結構蛋白3胜肽刺激後,其γ型干擾素分泌的程度有輕微的減少。因此我們認為,登革健康感染者的單核球抗病毒的能力有受到改變,包含對病毒清除能力較差、以及影響的T細胞的增生能力,並且也無法誘導T細胞分泌γ型干擾素。同時,我們也認為登革健康感染者的T細胞其分泌γ型干擾素的能力也有一定程度上的變化。

    Dengue is one of the most troublesome mosquito-borne infectious diseases in tropical and sub-tropical zones. Majority of people infected with dengue virus (DENV) are asymptomatic, and only a small population of succumb to severe dengue. Previous RNA array data suggested that monocytes were more anergy to DENV infection, and more toward to signaling pathways for adaptive immune cells upon re-stimulation with DENV in previously exposed subjects, suggesting that individuals exposed to DENV previously, despite monocytes were capable of inducing robust immune response, but had limited function in viral clearance. These results also hint an alternate mechanism in clearance of virus between naïve and previously DENV-exposed subjects. Monocytes were sorted out from peripheral blood mononuclear cells (PBMC) of naïve and previously DENV-exposed donors after signing consent, respectively, and challenged with DENV for cytokine analysis, and for co-culturing with the corresponding sorted T cells from PBMC and the T cells were subsequently subjected to FACS analyses by utilizing specific cell and functional markers including CD4, CD8 for T cell population, CD25 for T cell activation, IFN-γ for T cell function, and CFSE, Ki67 for T cell proliferation. Our results demonstrated that the levels of inflammatory cytokines, TNF-α and IL-8 were slightly higher, while IL-6 and IL-10 were slightly lower in previously DENV-exposed individuals. In addition, the levels of MIF were similar between naïve and previously DENV-exposed subjects. DENV-infected monocytes could have an effect on CD4 T cells function by the decrease of cell proliferation from previously DENV-exposed subjects. Also, we demonstrated that monocytes may not be an antigen-presenting cells during DENV infection, which hint monocytes did not alter T cells function directly. Moreover, the secretion of IFN-γ was delaying in the presence of CD3/CD28 activators, suggesting that the functions of T cells from previously DENV-exposed subjects may be irregular, and perhaps the viral clearance. Further, we utilized DENV NS3 peptides to stimulate T cells directly to investigate memory response of T cells. The results showed that IFN-γ secretion from memory T cells after NS3 peptides stimulation slightly decreased in previously DENV-exposed subjects. In conclusion, the functions of monocytes and T cells from previously DENV-exposed individuals were less response to DENV re-infection, moreover, monocytes from previously DENV-exposed subjects were less efficient to instigate with T cells compared to naïve subjects.

    中文摘要...1 Abstract...3 Acknowledgement...5 Table of Contents...7 List of Figures...10 List of Tables...11 Abbreviation Index...12 Introduction...13 1.Global prevalence and distribution of dengue virus...13 2.Structure and replication cycle of dengue virus...13 3.Dengue pathogenesis...15 4.Asymptomatic dengue infection...16 5.Immune response of Dengue infection...16 6.The role of monocytes in Dengue infection...17 7.The role of T cells in Dengue infection...18 8.Challenging questions:...20 9.The hypothesis of this study...20 Materials and Methods...22 A.Materials...22 1.Cell lines and Virus...22 2.Antibodies...22 3.Media and Reagents...24 4.Ingredients in buffers and media...26 5.Plastic and glass equipment...27 6.Instruments and machines...28 B.Methods...30 1.Cell lines (VERO and BHK21)...30 2.Plaque reduction neutralization test (PRNT)...30 3.PBMC and plasma isolation...31 4.IgG ratio evaluation...31 5.Ex vivo infection of DENV...32 6.DENV expansion...32 7.Magnetic beads isolation...33 8.Ex vivo co-culture of monocytes and T cells...33 9.Cytokine detection...34 10.Ex vivo DENV NS3 peptide stimulation...34 11.Multicolor FACS analysis...35 12.Viral nucleic acid extraction and RT-PCR...35 13.Statistical analysis...36 Results...37 1.Status of monocytes from previously DENV-exposed subjects...37 2.Serological status of naïve and previously DENV-exposed subjects...37 3.Similar cytokines profile in monocytes between previously DENV-exposed and naïve subjects...38 4.Decrease of CD4+ T cells proliferation after co-culturing with DENV-infected monocytes...39 5.Patterns of IFN- γ in CD4+ and CD8+ T cells from previously DENV-exposed subjects was altered in the presence of CD3/CD28 T cell activators...41 6.The ability of antigen presentation in monocytes from previously DENV-exposed subjects was not altered upon DENV re-infection...42 7.Monocytes from previously DENV-exposed subjects may not differentiate into dendritic cells upon DENV infection...42 8.Lower secretion of IFN-γ from memory T cells after DENV2 NS3 peptides stimulation in previously DENV-exposed subjects...43 Discussions...45 References...50 Figures...57 Tables...69

    1 Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504-507, doi:10.1038/nature12060 (2013).
    2 Perera, R. & Kuhn, R. J. Structural proteomics of dengue virus. Curr Opin Microbiol 11, 369-377, doi:10.1016/j.mib.2008.06.004 (2008).
    3 Slon Campos, J. L. et al. DNA-immunisation with dengue virus E protein domains I/II, but not domain III, enhances Zika, West Nile and Yellow Fever virus infection. PLoS One 12, e0181734, doi:10.1371/journal.pone.0181734 (2017).
    4 Byk, L. A. & Gamarnik, A. V. Properties and Functions of the Dengue Virus Capsid Protein. Annu Rev Virol 3, 263-281, doi:10.1146/annurev-virology-110615-042334 (2016).
    5 Chen, H. R., Lai, Y. C. & Yeh, T. M. Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J Biomed Sci 25, 58, doi:10.1186/s12929-018-0462-0 (2018).
    6 Avirutnan, P. et al. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog 3, e183, doi:10.1371/journal.ppat.0030183 (2007).
    7 Diamond, M. S. & Pierson, T. C. Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell 162, 488-492, doi:10.1016/j.cell.2015.07.005 (2015).
    8 Martina, B. E., Koraka, P. & Osterhaus, A. D. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22, 564-581, doi:10.1128/CMR.00035-09 (2009).
    9 Rajapakse, S., Rodrigo, C. & Rajapakse, A. Treatment of dengue fever. Infect Drug Resist 5, 103-112, doi:10.2147/IDR.S22613 (2012).
    10 Tsai, J. J., Lin, P. C., Tsai, C. Y., Wang, Y. H. & Liu, L. T. Low frequency of asymptomatic dengue virus-infected donors in blood donor centers during the largest dengue outbreak in Taiwan. PLoS One 13, e0205248, doi:10.1371/journal.pone.0205248 (2018).
    11 Rathore, A. P. S. & St John, A. L. Immune responses to dengue virus in the skin. Open Biol 8, doi:10.1098/rsob.180087 (2018).
    12 Diamond, M. S. Evasion of innate and adaptive immunity by flaviviruses. Immunology and cell biology 81, 196-206, doi:10.1046/j.1440-1711.2003.01157.x (2003).
    13 Guabiraba, R. & Ryffel, B. Dengue virus infection: current concepts in immune mechanisms and lessons from murine models. Immunology 141, 143-156, doi:10.1111/imm.12188 (2014).
    14 Wong, K. L. et al. The three human monocyte subsets: implications for health and disease. Immunologic research 53, 41-57, doi:10.1007/s12026-012-8297-3 (2012).
    15 Wong, K. L. et al. Susceptibility and response of human blood monocyte subsets to primary dengue virus infection. PLoS One 7, e36435, doi:10.1371/journal.pone.0036435 (2012).
    16 Mathew, A., Townsley, E. & Ennis, F. A. Elucidating the role of T cells in protection against and pathogenesis of dengue virus infections. Future microbiology 9, 411-425, doi:10.2217/fmb.13.171 (2014).
    17 Chuang, Y. C. et al. Macrophage migration inhibitory factor induced by dengue virus infection increases vascular permeability. Cytokine 54, 222-231, doi:10.1016/j.cyto.2011.01.013 (2011).
    18 Masood, K. I. et al. Role of TNF α, IL-6 and CXCL10 in Dengue disease severity. Iranian journal of microbiology 10, 202-207 (2018).
    19 Bosch, I. et al. Increased production of interleukin-8 in primary human monocytes and in human epithelial and endothelial cell lines after dengue virus challenge. Journal of virology 76, 5588-5597, doi:10.1128/jvi.76.11.5588-5597.2002 (2002).
    20 Srikiatkhachorn, A. Plasma leakage in dengue haemorrhagic fever. Thrombosis and haemostasis 102, 1042-1049, doi:10.1160/th09-03-0208 (2009).
    21 Taniuchi, I. CD4 Helper and CD8 Cytotoxic T Cell Differentiation. Annual Review of Immunology 36, 579-601, doi:10.1146/annurev-immunol-042617-053411 (2018).
    22 Luckheeram, R. V., Zhou, R., Verma, A. D. & Xia, B. CD4(+)T cells: differentiation and functions. Clinical & developmental immunology 2012, 925135, doi:10.1155/2012/925135 (2012).
    23 Jaigirdar, S. A. & MacLeod, M. K. Development and Function of Protective and Pathologic Memory CD4 T Cells. Frontiers in immunology 6, 456, doi:10.3389/fimmu.2015.00456 (2015).
    24 Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22, 745-763, doi:10.1146/annurev.immunol.22.012703.104702 (2004).
    25 Weiskopf, D. & Sette, A. T-cell immunity to infection with dengue virus in humans. Frontiers in immunology 5, 93, doi:10.3389/fimmu.2014.00093 (2014).
    26 Malavige, G. N. & Ogg, G. S. T cell responses in dengue viral infections. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 58, 605-611, doi:10.1016/j.jcv.2013.10.023 (2013).
    27 Wijeratne, D. T. et al. Quantification of dengue virus specific T cell responses and correlation with viral load and clinical disease severity in acute dengue infection. PLOS Neglected Tropical Diseases 12, e0006540, doi:10.1371/journal.pntd.0006540 (2018).
    28 Rafique, I. et al. Asymptomatic dengue infection in adults of major cities of Pakistan. Asian Pacific Journal of Tropical Medicine 10, 1002-1006, doi:https://doi.org/10.1016/j.apjtm.2017.09.013 (2017).
    29 Chatchen, S., Sabchareon, A. & Sirivichayakul, C. Serodiagnosis of asymptomatic dengue infection. Asian Pac J Trop Med 10, 11-14, doi:10.1016/j.apjtm.2016.12.002 (2017).
    30 Simon-Loriere, E. et al. Increased adaptive immune responses and proper feedback regulation protect against clinical dengue. Science translational medicine 9, doi:10.1126/scitranslmed.aal5088 (2017).
    31 Paul, A. & Vibhuti, A. Dengue Symptoms Significance in Anti-Dengue Drug Development: Road Less Travelled. Bioinformation 13, 131-135, doi:10.6026/97320630013131 (2017).
    32 Huang, J. et al. Serum Cytokine Profiles in Patients with Dengue Fever at the Acute Infection Phase. Disease markers 2018, 8403937, doi:10.1155/2018/8403937 (2018).
    33 Roger, T. et al. Plasma Levels of Macrophage Migration Inhibitory Factor and d-Dopachrome Tautomerase Show a Highly Specific Profile in Early Life. Frontiers in immunology 8, 26, doi:10.3389/fimmu.2017.00026 (2017).
    34 Machura, E., Mazur, B., Pieniazek, W. & Karczewska, K. Expression of naive/memory (CD45RA/CD45RO) markers by peripheral blood CD4+ and CD8 + T cells in children with asthma. Archivum immunologiae et therapiae experimentalis 56, 55-62, doi:10.1007/s00005-008-0005-6 (2008).
    35 Tewari, K., Nakayama, Y. & Suresh, M. Role of direct effects of IFN-gamma on T cells in the regulation of CD8 T cell homeostasis. Journal of immunology (Baltimore, Md. : 1950) 179, 2115-2125, doi:10.4049/jimmunol.179.4.2115 (2007).
    36 Diamond, M. S. et al. Modulation of Dengue virus infection in human cells by alpha, beta, and gamma interferons. Journal of virology 74, 4957-4966, doi:10.1128/jvi.74.11.4957-4966.2000 (2000).
    37 Lee, J. et al. The MHC class II antigen presentation pathway in human monocytes differs by subset and is regulated by cytokines. PLoS One 12, e0183594, doi:10.1371/journal.pone.0183594 (2017).
    38 Leon, B., Lopez-Bravo, M. & Ardavin, C. Monocyte-derived dendritic cells. Seminars in immunology 17, 313-318, doi:10.1016/j.smim.2005.05.013 (2005).
    39 Schmid, M. A., Diamond, M. S. & Harris, E. Dendritic cells in dengue virus infection: targets of virus replication and mediators of immunity. Frontiers in immunology 5, 647, doi:10.3389/fimmu.2014.00647 (2014).
    40 Nakano, H. et al. Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nature immunology 10, 394-402, doi:10.1038/ni.1707 (2009).
    41 Dauer, M. et al. Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. Journal of immunology (Baltimore, Md. : 1950) 170, 4069-4076, doi:10.4049/jimmunol.170.8.4069 (2003).
    42 Duangchinda, T. et al. Immunodominant T-cell responses to dengue virus NS3 are associated with DHF. Proceedings of the National Academy of Sciences of the United States of America 107, 16922-16927, doi:10.1073/pnas.1010867107 (2010).
    43 Chandele, A. et al. Characterization of Human CD8 T Cell Responses in Dengue Virus-Infected Patients from India. Journal of virology 90, 11259-11278, doi:10.1128/jvi.01424-16 (2016).
    44 Rivino, L. et al. Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. Journal of virology 87, 2693-2706, doi:10.1128/jvi.02675-12 (2013).
    45 Lim, M. Q. et al. Cross-Reactivity and Anti-viral Function of Dengue Capsid and NS3-Specific Memory T Cells Toward Zika Virus. Frontiers in immunology 9, 2225, doi:10.3389/fimmu.2018.02225 (2018).
    46 Forster, R., Davalos-Misslitz, A. C. & Rot, A. CCR7 and its ligands: balancing immunity and tolerance. Nature reviews. Immunology 8, 362-371, doi:10.1038/nri2297 (2008).
    47 Italiani, P. & Boraschi, D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Frontiers in immunology 5, 514, doi:10.3389/fimmu.2014.00514 (2014).
    48 Noisakran, S. et al. Infection of bone marrow cells by dengue virus in vivo. Experimental hematology 40, 250-259.e254, doi:10.1016/j.exphem.2011.11.011 (2012).
    49 Guzman, M. G. & Vazquez, S. The complexity of antibody-dependent enhancement of dengue virus infection. Viruses 2, 2649-2662, doi:10.3390/v2122649 (2010).
    50 Sirivichayakul, C., Sabchareon, A., Limkittikul, K. & Yoksan, S. Plaque reduction neutralization antibody test does not accurately predict protection against dengue infection in Ratchaburi cohort, Thailand. Virology journal 11, 48, doi:10.1186/1743-422x-11-48 (2014).
    51 Meng, F. & Lowell, C. A. Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. The Journal of experimental medicine 185, 1661-1670, doi:10.1084/jem.185.9.1661 (1997).
    52 Chen, Y. C. & Wang, S. Y. Activation of terminally differentiated human monocytes/macrophages by dengue virus: productive infection, hierarchical production of innate cytokines and chemokines, and the synergistic effect of lipopolysaccharide. Journal of virology 76, 9877-9887, doi:10.1128/jvi.76.19.9877-9887.2002 (2002).
    53 Sprent, J. Antigen-presenting cells. Professionals and amateurs. Current biology : CB 5, 1095-1097 (1995).
    54 Jakubzick, C. V., Randolph, G. J. & Henson, P. M. Monocyte differentiation and antigen-presenting functions. Nature reviews. Immunology 17, 349-362, doi:10.1038/nri.2017.28 (2017).
    55 Gregersen, P. K. in Goldman's Cecil Medicine (Twenty Fourth Edition) (eds Lee Goldman & Andrew I. Schafer) 222-226 (W.B. Saunders, 2012).
    56 Ten Bosch, Q. A. et al. Contributions from the silent majority dominate dengue virus transmission. PLoS pathogens 14, e1006965-e1006965, doi:10.1371/journal.ppat.1006965 (2018).

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE