| 研究生: |
許晉源 Hsu, Jinn-yuan |
|---|---|
| 論文名稱: |
精胺丁二酸合成酵素活性及基因突變之研究 The study of argininosuccinate synthetase activity and genetic mutations |
| 指導教授: |
謝淑珠
Shiesh, Shu-chu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 精胺丁二酸合成酶 、液相層析串聯式質譜儀 、高解析度溶解曲線分析方法 、瓜胺酸血症 |
| 外文關鍵詞: | Citrullinemia, argininosuccinate synthetase, tandem mass spectrometry, high resolution melting curve analysis |
| 相關次數: | 點閱:211 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:瓜胺酸血症是體染色體隱性遺傳的疾病,起因於精胺丁二酸合成酶基因突變。瓜胺酸血症的病人可能會造成高血氨症,更進一步造成昏睡、昏迷。雖然台灣利用新生兒血片篩檢以及臨床生化數值可以篩選出來疑似瓜胺酸血症的案例,但是還沒有建立國內瓜胺酸血症確認診斷的檢驗方法。利用傳統限制片段長度多型性來偵測基因突變,不僅耗時而且價格昂貴。傳統檢測精胺丁二酸合成酶活性的方式會運用到放射線物質因此所費不貲,測量精胺丁二酸合成酶活性所需要的檢體來源為皮膚纖維母細胞或是肝臟切片是屬於侵入性的方式。目標:本研究的目標,是要建立利用非放射線物質測量精胺丁二酸合成酶活性以及快速篩檢基因突變的檢測方式。方法:本篇研究首先利用液相層析串聯式質譜儀測量皮膚纖維母細胞精胺丁二酸合成酶活性。以及探討酵素活性與精胺丁二酸合成酶基因突變之關聯性。並且利用聚合酶連鎖反應和限制性片段長度多型性方式偵測精胺丁二酸合成酶基因突變。我們建立高解析度解離方法來篩選精胺丁二酸合成酶基因突變。結果:建立的精胺丁二酸標準曲線濃度測定的範圍包含 0 至 50 μmol/L (R2 = 0.99)。藉由偵測精胺丁二酸合成酶的產物-精胺丁二酸,可以測得皮膚纖維母細胞精胺丁二酸合成酶的活性。這個檢測方式顯示,在精胺丁二酸合成酶平均活性 1.5 U/g 組內檢測變異係數為 5.9 % (n=10) 與平均活性 0.6 U/g 為 6.1 % (n=9)。在精胺丁二酸合成酶平均活性 2.1 U/g 組間檢測變異係數為 6.6 % (n=12) 與平均活性 0.6 U/g 為 9.2 % (n=10)。正常人皮膚纖維母細胞精胺丁二酸合成酶活性平均值為 1.7 U/g (n=16) 標準差為 0.85 U/g。兩位瓜胺酸血症第一型病人皮膚纖維母細胞的酵素活性,兩者皆偵測不到。從陽性對照組其檢體精胺丁二酸合成酶活性只有正常人平均值的 38 %,我們檢測出的結果為 0.6 U/g (約為正常人平均值的36 %)。利用聚合酶連鎖反應以及限制性片段長度多型性技術偵測 5 種常見的精胺丁二酸合成酶基因突變。運用聚合酶連鎖反應以及解離分析方法偵測到瓜胺酸血症第一型病人位在精胺丁二酸合成酶之互補去氧核醣核酸上有突變。並且經過定序發現是 1087C→T (R363W) 的突變。結論:從結果得知,利用液相層析串聯式質譜儀方法偵測精胺丁二酸合成酶活性並且區分瓜胺酸血症第一型病人以及正常人。並且利用高解析度溶解曲線分析方法確實可以用來快速篩檢 ASS 基因的突變。
Background:Citrullinemia is an autosomal recessive disorder, caused by mutations of argininosuccinate synthetase gene (ASS). Patients with citrullinemia may develop hyperammonemia, progressive lethargy and coma. Although newborn blood spot screening have been used for screening citrullinemia in Taiwan, the confirmatory tests have not established. Traditional diagnostic method uses restriction fragment length polymorphism (RFLP) for ASS gene mutation analysis and is time-consuming and expensive. ASS enzyme activity uses radio isotope- labeled substrates, which is also time-consuming and expensive. This study aimed to establish a non-radio isotope-labeled substrates method for ASS enzyme activity measurement and a high throughput assay for ASS gene mutation scanning. Methods:The ASS enzyme activity of skin fibroblast was measured by using liquid chromatography-tandem mass spectrometry (LC-MS/MS).Mutations in ASS gene was detected by PCR and high resolution melting curve analysis. Results:Using LC-MS/MS technique, the standard curve of Argininosuccinate (ASA) was established covering the range 0 ~ 50 μmol/L (R2=0.99). By measuring the concentrations of ASA, the ASS enzyme activity in skin fibroblast was calculated. The intra-assay imprecision (CV%) was 5.9% with the mean activity of ASS 1.5 U/g (n=10) and 6.1% with mean value of 0.6 U/g (n=9). The inter-assay imprecision (CV%) was 6.6% with the mean activity of 2.1 U/g (n=12) and 9.2% with mean value of 0.6 U/g (n=10). The mean activity of ASS in skin fibroblasts from normal subjects was 1.7 U/g (standard deviation 0.85 U/g, n=16). In two patients with citrullinemia type I, ASS enzyme activity was not detectable. For one positive control with 38% of ASS specific activity, our result was 0.6 U/g (36% of ASS mean specific activity in normal). Five predominant mutations in ASS gene were detected using PCR and RFLP. The mutation 1087C→T (R363W) of ASS cDNA in patients with the citrullinemia type I was detected by PCR and melting curve analysis, and further confirmed by sequencing. Conclusion:The results show that the measurement of the production rate of ASA by LC-MS/MS method is feasible and able to differentiate ASS activity between citrullinemia type I patients and normal subjects. The high resolution melting curve analysis is scanning of ASS mutations.
1. Saheki, T., Ueda, A., Hosoya, M., Kusumi, K., Takada, S., Tsuda, M., and Katsunuma, T. 1981. Qualitative and quantitative abnormalities of argininosuccinate synthetase in citrullinemia. Clin Chim Acta 109:325-335.
2. Saheki, T., Tsuda, M., Takada, S., Kusumi, K., and Katsunuma, T. 1980. Role of argininosuccinate synthetase in the regulation of urea synthesis in the rat and argininosuccinate synthetase-associated metabolic disorder in man. Adv Enzyme Regul 18:221-238.
3. Saheki, T., Ueda, A., Iizima, K., Yamada, N., Kobayashi, K., Takahashi, K., and Katsunuma, T. 1982. Argininosuccinate synthetase activity in cultured skin fibroblasts of citrullinemic patients. Clin Chim Acta 118:93-97.
4. Saheki, T., Kobayashi, K., and Inoue, I. 1987. Hereditary disorders of the urea cycle in man: biochemical and molecular approaches. Rev Physiol Biochem Pharmacol 108:21-68.
5. Beaudet, A.L., O'Brien, W.E., Bock, H.G., Freytag, S.O., and Su, T.S. 1986. The human argininosuccinate synthetase locus and citrullinemia. Adv Hum Genet 15:161-196, 291-162.
6. Kobayashi, K., Jackson, M.J., Tick, D.B., O'Brien, W.E., and Beaudet, A.L. 1990. Heterogeneity of mutations in argininosuccinate synthetase causing human citrullinemia. J Biol Chem 265:11361-11367.
7. McKusick, V.A. 1998. On the naming of clinical disorders, with particular reference to eponyms. Medicine (Baltimore) 77:1-2.
8. Girard, J.R., Cuendet, G.S., Marliss, E.B., Kervran, A., Rieutort, M., and Assan, R. 1973. Fuels, hormones, and liver metabolism at term and during the early postnatal period in the rat. J Clin Invest 52:3190-3200.
9. Corbier, P., and Roffi, J. 1978. Increased adrenocortical activity in the newborn rat. Biol Neonate 33:72-79.
10. Wu, G., and Morris, S.M., Jr. 1998. Arginine metabolism: nitric oxide and beyond. Biochem J 336 ( Pt 1):1-17.
11. Mori, M., and Gotoh, T. 2000. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophys Res Commun 275:715-719.
12. Levillain, O., Hus-Citharel, A., Morel, F., and Bankir, L. 1990. Localization of arginine synthesis along rat nephron. Am J Physiol 259:F916-923.
13. Dhanakoti, S.N., Brosnan, J.T., Herzberg, G.R., and Brosnan, M.E. 1990. Renal arginine synthesis: studies in vitro and in vivo. Am J Physiol 259:E437-442.
14. Tizianello, A., De Ferrari, G., Garibotto, G., Gurreri, G., and Robaudo, C. 1980. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest 65:1162-1173.
15. Hattori, Y., Campbell, E.B., and Gross, S.S. 1994. Argininosuccinate synthetase mRNA and activity are induced by immunostimulants in vascular smooth muscle. Role in the regeneration or arginine for nitric oxide synthesis. J Biol Chem 269:9405-9408.
16. Sessa, W.C., Hecker, M., Mitchell, J.A., and Vane, J.R. 1990. The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: L-glutamine inhibits the generation of L-arginine by cultured endothelial cells. Proc Natl Acad Sci U S A 87:8607-8611.
17. Knowles, R.G., and Moncada, S. 1994. Nitric oxide synthases in mammals. Biochem J 298 ( Pt 2):249-258.
18. Alderton, W.K., Cooper, C.E., and Knowles, R.G. 2001. Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593-615.
19. Nakamura, H., Saheki, T., Ichiki, H., Nakata, K., and Nakagawa, S. 1991. Immunocytochemical localization of argininosuccinate synthetase in the rat brain. J Comp Neurol 312:652-679.
20. Ratner, S. 1973. Enzymes of arginine and urea synthesis. Adv Enzymol Relat Areas Mol Biol 39:1-90.
21. Karlberg, T., Collins, R., van den Berg, S., Flores, A., Hammarstrom, M., Hogbom, M., Holmberg Schiavone, L., and Uppenberg, J. 2008. Structure of human argininosuccinate synthetase. Acta Crystallogr D Biol Crystallogr 64:279-286.
22. Lemke, C.T., and Howell, P.L. 2002. Substrate induced conformational changes in argininosuccinate synthetase. J Biol Chem 277:13074-13081.
23. McMurray, W.C.M., F.; Rossiter, R. J.; Rathbun, J. C.; Valentine, G. H.; Koegler, S. J.; Zarfas, D. E. 1962. Citrullinuria: a new aminoaciduria associated with mental retardation. . Lancet 279:138.
24. Tedesco, T.A., and Mellman, W.J. 1967. Argininosuccinate Synthetase Activity and Citrulline Metabolism in Cells Cultured from a Citrullinemic Subject. Proc Natl Acad Sci U S A 57:829-834.
25. Maestri, N.E., Clissold, D.B., and Brusilow, S.W. 1995. Long-term survival of patients with argininosuccinate synthetase deficiency. J Pediatr 127:929-935.
26. Bachmann, C. 2003. Outcome and survival of 88 patients with urea cycle disorders: a retrospective evaluation. Eur J Pediatr 162:410-416.
27. Beaudet, A.L., Su, T.S., O'Brien, W.E., D'Eustachio, P., Barker, P.E., and Ruddle, F.H. 1982. Dispersion of argininosuccinate-synthetase-like human genes to multiple autosomes and the X chromosome. Cell 30:287-293.
28. Su, T.S., Nussbaum, R.L., Airhart, S., Ledbetter, D.H., Mohandas, T., O'Brien, W.E., and Beaudet, A.L. 1984. Human chromosomal assignments for 14 argininosuccinate synthetase pseudogenes: cloned DNAs as reagents for cytogenetic analysis. Am J Hum Genet 36:954-964.
29. Bock, H.G., Su, T.S., O'Brien, W.E., and Beaudet, A.L. 1983. Sequence for human argininosuccinate synthetase cDNA. Nucleic Acids Res 11:6505-6512.
30. Freytag, S.O., Beaudet, A.L., Bock, H.G., and O'Brien, W.E. 1984. Molecular structure of the human argininosuccinate synthetase gene: occurrence of alternative mRNA splicing. Mol Cell Biol 4:1978-1984.
31. Freytag, S.O., Bock, H.G., Beaudet, A.L., and O'Brien, W.E. 1984. Molecular structures of human argininosuccinate synthetase pseudogenes. Evolutionary and mechanistic implications. J Biol Chem 259:3160-3166.
32. Su, T.S., Bock, H.G., O'Brien, W.E., and Beaudet, A.L. 1981. Cloning of cDNA for argininosuccinate synthetase mRNA and study of enzyme overproduction in a human cell line. J Biol Chem 256:11826-11831.
33. Surh, L.C., Beaudet, A.L., and O'Brien, W.E. 1991. Molecular characterization of the murine argininosuccinate synthetase locus. Gene 99:181-189.
34. Husson, A., Brasse-Lagnel, C., Fairand, A., Renouf, S., and Lavoinne, A. 2003. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. Eur J Biochem 270:1887-1899.
35. Thoene, J.G. 2008. Citrullinemia Type I. Gene Reviews.
36. Ruitenbeek, W., Kobayashi, K., Iijima, M., Smeitink, J.A., Engelke, U.F., De Abreu, R.A., Kwast, H.T., Saheki, T., Boelen, C.A., De Jong, J.G., et al. 2003. Moderate citrullinaemia without hyperammonaemia in a child with mutated and deficient argininosuccinate synthetase. Ann Clin Biochem 40:102-107.
37. Haberle, J., Pauli, S., Linnebank, M., Kleijer, W.J., Bakker, H.D., Wanders, R.J., Harms, E., and Koch, H.G. 2002. Structure of the human argininosuccinate synthetase gene and an improved system for molecular diagnostics in patients with classical and mild citrullinemia. Hum Genet 110:327-333.
38. Choi, J.H., Kim, H., and Yoo, H.W. 2006. Two cases of citrullinaemia presenting with stroke. J Inherit Metab Dis 29:182-183.
39. 財團法人罕見疾病基金會. http://www.tfrd.org.tw/.
40. Haberle, J., Pauli, S., Schmidt, E., Schulze-Eilfing, B., Berning, C., and Koch, H.G. 2003. Mild citrullinemia in Caucasians is an allelic variant of argininosuccinate synthetase deficiency (citrullinemia type 1). Mol Genet Metab 80:302-306.
41. Leonard, J.V., and Morris, A.A. 2002. Urea cycle disorders. Semin Neonatol 7:27-35.
42. Bachmann, C. 2003. Long-term outcome of patients with urea cycle disorders and the question of neonatal screening. Eur J Pediatr 162 Suppl 1:S29-33.
43. Thoene, J., Batshaw, M., Spector, E., Kulovich, S., Brusilow, S., Walser, M., and Nyhan, W. 1977. Neonatal citrllinemia: treatment with keto-analogues of essential amino acids. J Pediatr 90:218-224.
44. Gao, H.Z., Kobayashi, K., Tabata, A., Tsuge, H., Iijima, M., Yasuda, T., Kalkanoglu, H.S., Dursun, A., Tokatli, A., Coskun, T., et al. 2003. Identification of 16 novel mutations in the argininosuccinate synthetase gene and genotype-phenotype correlation in 38 classical citrullinemia patients. Hum Mutat 22:24-34.
45. Kleijer, W.J., Blom, W., Huijmans, J.G., Mooyman, M.C., Berger, R., and Niermeijer, M.F. 1984. Prenatal diagnosis of citrullinemia: elevated levels of citrulline in the amniotic fluid in the three affected pregnancies. Prenat Diagn 4:113-118.
46. Su, T.S., Bock, H.G., Beaudet, A.L., and O'Brien, W.E. 1982. Molecular analysis of argininosuccinate synthetase deficiency in human fibroblasts. J Clin Invest 70:1334-1339.
47. Li, C.M., Chao, H.K., Liu, Y.F., and Su, T.S. 2001. A nonsense mutation is responsible for the RNA-negative phenotype in human citrullinaemia. Eur J Hum Genet 9:685-689.
48. Kobayashi, K., Shaheen, N., Terazono, H., and Saheki, T. 1994. Mutations in argininosuccinate synthetase mRNA of Japanese patients, causing classical citrullinemia. Am J Hum Genet 55:1103-1112.
49. Todd, S., and Naylor, S.L. 1992. New chromosomal mapping assignments for argininosuccinate synthetase pseudogene 1, interferon-beta 3 gene, and the diazepam binding inhibitor gene. Somat Cell Mol Genet 18:381-385.
50. Engel, K., Hohne, W., and Haberle, J. 2008. Mutations and polymorphisms in the human argininosuccinate synthetase (ASS1) gene. Hum Mutat.
51. Marsden, D. 2003. Expanded newborn screening by tandem mass spectrometry: the Massachusetts and New England experience. Southeast Asian J Trop Med Public Health 34 Suppl 3:111-114.
52. 中華民國人類遺傳學會. http://www.genes-at-taiwan.com.tw/.
53. 行政院衛生署罕見疾病防治及藥物法 http://dohlaw.doh.gov.tw/Chi/FLAW/FLAWDAT0202.asp.
54. Geyer, R., Geyer, H., Kuhnhardt, S., Mink, W., and Stirm, S. 1983. Methylation analysis of complex carbohydrates in small amounts: capillary gas chromatography-mass fragmentography of methylalditol acetates obtained from N-glycosidically linked glycoprotein oligosaccharides. Anal Biochem 133:197-207.
55. Voon S. Ong, R.A.H. 1994. Electron capture mass spectrometry of organic environmental contaminants. . Mass Spectrometry Reviews 13:259-283.
56. Donald J. Rose, J., and James W. Jorgenson. 1988. Characterization and Automation of Sample Introduction Methods for Capillary Zone Electrophoresis. Anal. Chem 60:642-648.
57. Arnott, D., Shabanowitz, J., and Hunt, D.F. 1993. Mass spectrometry of proteins and peptides: sensitive and accurate mass measurement and sequence analysis. Clin Chem 39:2005-2010.
58. Opiteck, G.J., Lewis, K.C., Jorgenson, J.W., and Anderegg, R.J. 1997. Comprehensive on-line LC/LC/MS of proteins. Anal Chem 69:1518-1524.
59. TODD, J.F.J. 1991. RECOMMENDATIONS FOR NOMENCLATURE AND SYMBOLISM FOR MASS SPECTROSCOPY. Pure & Appl. Chem. 63:1541-1566.
60. Terrlink, T., van Leeuwen, P.A., and Houdijk, A. 1994. Plasma amino acids determined by liquid chromatography within 17 minutes. Clin Chem 40:245-249.
61. Issaq, H.J., and Chan, K.C. 1995. Separation and detection of amino acids and their enantiomers by capillary electrophoresis: a review. Electrophoresis 16:467-480.
62. Casetta, B., Tagliacozzi, D., Shushan, B., and Federici, G. 2000. Development of a method for rapid quantitation of amino acids by liquid chromatography-tandem mass spectrometry (LC-MSMS) in plasma. Clin Chem Lab Med 38:391-401.
63. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., and Whitehouse, C.M. 1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64-71.
64. Whitehouse, C.M., Dreyer, R.N., Yamashita, M., and Fenn, J.B. 1985. Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675-679.
65. Carroll, D.I., Dzidic I., Stillwell R.N., Haegele K.D., Horning E.C. 1975. Atmospheric Pressure Ionization Mass Spectrometry:Corona ischarge Ion Source for Use in Liquid Chromatograph-Mass pectrometer-Computer Analytical System. ANALYTICAL CHEMISTR 47:2369.
66. Horning, E.C., Horning, M.G., Carroll, D.I., Dzidic, I., Stillwell, R.N. 1973. New Picogram Detection System Based on a Mass Spectrometer with an External Ionization Source at Atmospheric Pressure. Anal Chem 45:936-943.
67. Horning, E.C., Carroll, D.I., Dzidic, I., Haegele, K.D., Horning, M.G., and Stillwell, R.N. 1974. Atmospheric pressure ionization (API) mass spectrometry. Solvent-mediated ionization of samples introduced in solution and in a liquid chromatograph effluent stream. J Chromatogr Sci 12:725-729.
68. 蔡有光. 質譜儀技術於蛋白質體分析之應用 (Mass Spectrometry in Proteome Analysis).
69. 田育彰, 洪千雯, 廖寶琦. 離子阱與四極棒-飛行時間兩種串聯式質譜儀簡介與其在蛋白質體學研究的應用.
70. Chace, D.H. 2003. Mass spectrometry-based diagnostics: the upcoming revolution in disease detection has already arrived. Clin Chem 49:1227-1228; author reply 1228-1229.
71. Burtis, C.A., Ashwood, E.R., Bruns, D.E. Tietz textbook of clinical chemistry and molecular diagnostics. 4th ed. St. Louis: Saunders, 2006.
72. Chace, D.H., Millington, D.S., Terada, N., Kahler, S.G., Roe, C.R., and Hofman, L.F. 1993. Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin Chem 39:66-71.
73. Chace, D.H., Hillman, S.L., Millington, D.S., Kahler, S.G., Roe, C.R., and Naylor, E.W. 1995. Rapid diagnosis of maple syrup urine disease in blood spots from newborns by tandem mass spectrometry. Clin Chem 41:62-68.
74. Chace, D.H., Hillman, S.L., Millington, D.S., Kahler, S.G., Adam, B.W., and Levy, H.L. 1996. Rapid diagnosis of homocystinuria and other hypermethioninemias from newborns' blood spots by tandem mass spectrometry. Clin Chem 42:349-355.
75. Petricoin, E.F., and Liotta, L.A. 2003. Mass spectrometry-based diagnostics: the upcoming revolution in disease detection. Clin Chem 49:533-534.
76. Liew, M., Pryor, R., Palais, R., Meadows, C., Erali, M., Lyon, E., and Wittwer, C. 2004. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem 50:1156-1164.
77. Wittwer, C.T., Reed, G.H., Gundry, C.N., Vandersteen, J.G., and Pryor, R.J. 2003. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853-860.
78. Crockett, A.O., and Wittwer, C.T. 2001. Fluorescein-labeled oligonucleotides for real-time pcr: using the inherent quenching of deoxyguanosine nucleotides. Anal Biochem 290:89-97.
79. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya, T. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A 86:2766-2770.
80. Lerman, L.S., and Silverstein, K. 1987. Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol 155:482-501.
81. Highsmith, W.E., Jr., Jin, Q., Nataraj, A.J., O'Connor, J.M., Burland, V.D., Baubonis, W.R., Curtis, F.P., Kusukawa, N., and Garner, M.M. 1999. Use of a DNA toolbox for the characterization of mutation scanning methods. I: construction of the toolbox and evaluation of heteroduplex analysis. Electrophoresis 20:1186-1194.
82. Xiao, W., and Oefner, P.J. 2001. Denaturing high-performance liquid chromatography: A review. Hum Mutat 17:439-474.
83. Li, Q., Liu, Z., Monroe, H., and Culiat, C.T. 2002. Integrated platform for detection of DNA sequence variants using capillary array electrophoresis. Electrophoresis 23:1499-1511.
84. Reed, G.H., and Wittwer, C.T. 2004. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 50:1748-1754.
85. Zhou, L., Myers, A.N., Vandersteen, J.G., Wang, L., and Wittwer, C.T. 2004. Closed-tube genotyping with unlabeled oligonucleotide probes and a saturating DNA dye. Clin Chem 50:1328-1335.
86. Fortini, D., Ciammaruconi, A., De Santis, R., Fasanella, A., Battisti, A., D'Amelio, R., Lista, F., Cassone, A., and Carattoli, A. 2007. Optimization of high-resolution melting analysis for low-cost and rapid screening of allelic variants of Bacillus anthracis by multiple-locus variable-number tandem repeat analysis. Clin Chem 53:1377-1380.
87. Lin, J.H., Tseng, C.P., Chen, Y.J., Lin, C.Y., Chang, S.S., Wu, H.S., and Cheng, J.C. 2008. Rapid differentiation of influenza A virus subtypes and genetic screening for virus variants by high-resolution melting analysis. J Clin Microbiol 46:1090-1097.
88. Zhou, L., Vandersteen, J., Wang, L., Fuller, T., Taylor, M., Palais, B., and Wittwer, C.T. 2004. High-resolution DNA melting curve analysis to establish HLA genotypic identity. Tissue Antigens 64:156-164.
89. McKinney, J.T., Longo, N., Hahn, S.H., Matern, D., Rinaldo, P., Strauss, A.W., and Dobrowolski, S.F. 2004. Rapid, comprehensive screening of the human medium chain acyl-CoA dehydrogenase gene. Mol Genet Metab 82:112-120.
90. Willmore, C., Holden, J.A., Zhou, L., Tripp, S., Wittwer, C.T., and Layfield, L.J. 2004. Detection of c-kit-activating mutations in gastrointestinal stromal tumors by high-resolution amplicon melting analysis. Am J Clin Pathol 122:206-216.
91. Lockridge, O., Spector, E.B., and Bloom, A.D. 1977. Argininosuccinate synthetase activity in cultured human lymphocytes. Biochem Genet 15:395-407.
92. Su, T.S., Beaudet, A.L., and O'Brien, W.E. 1981. Increased translatable messenger ribonucleic acid for argininosuccinate synthetase in canavanine-resistant human cells. Biochemistry 20:2956-2960.
93. Schimke, R.T. 1964. Enzymes of Arginine Metabolism in Mammalian Cell Culture. I. Repression of Argininosuccinate Synthetase and Argininosuccinase. J Biol Chem 239:136-145.
94. Kimball, M.E., and Jacoby, L.B. 1980. Purification and properties of argininosuccinate synthetase from normal and canavanine-resistant human lymphoblasts. Biochemistry 19:705-709.
95. Spector, E.B., Lockridge, O., and Bloom, A.D. 1975. Citrulline metabolism in normal and citrullinemic human lymphocyte lines. Biochem Genet 13:471-485.
96. Irr, J.D., and Jacoby, L.B. 1978. Control of argininosuccinate synthetase by arginine in human lymphoblasts. Somatic Cell Genet 4:111-124.
97. Takada, S., Saheki, T., Igarashi, Y., and Katsunuma, T. 1979. Studies on rat liver argininosuccinate synthetase. Inhibition by various amino acids. J Biochem 85:1309-1314.
98. Matsuda, Y., Tsuji, A., Katunuma, N., Hayashi, M., and Takahashi, Y. 1979. Studies on liver argininosuccinate synthetase in a patient with citrullinemia and in normal subjects. J Biochem 85:191-195.
99. Imamura, Y., Kobayashi, K., Yamashita, T., Saheki, T., Ichiki, H., Hashida, S., and Ishikawa, E. 1987. Clinical application of enzyme immunoassay in the analysis of citrullinemia. Clin Chim Acta 164:201-208.
100. Germer, S., Holland, M.J., and Higuchi, R. 2000. High-throughput SNP allele-frequency determination in pooled DNA samples by kinetic PCR. Genome Res 10:258-266.
101. Kwok, P.Y., and Chen, X. 2003. Detection of single nucleotide polymorphisms. Curr Issues Mol Biol 5:43-60.
102. Ronaghi, M. 2003. Pyrosequencing for SNP genotyping. Methods Mol Biol 212:189-195.
103. Sauer, S., and Gut, I.G. 2002. Genotyping single-nucleotide polymorphisms by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 782:73-87.
104. Takano, E.A., Mitchell, G., Fox, S.B., and Dobrovic, A. 2008. Rapid detection of carriers with BRCA1 and BRCA2 mutations using high resolution melting analysis. BMC Cancer 8:59.
105. De Leeneer, K., Coene, I., Poppe, B., De Paepe, A., and Claes, K. 2008. Rapid and sensitive detection of BRCA1/2 mutations in a diagnostic setting: comparison of two high-resolution melting platforms. Clin Chem 54:982-989.