| 研究生: |
蔡心堯 Tsai, Hsin-Yao |
|---|---|
| 論文名稱: |
SWAN模式於潮汐水位變化之研究 A study of tidal water level changes by swan model |
| 指導教授: |
許泰文
Hsu, Tai-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 潮汐 、SWAN模式 、POM模式 |
| 外文關鍵詞: | tide, swan model, pom model |
| 相關次數: | 點閱:140 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
風浪數值模式已被廣泛應用於波浪預報,本文利用POM模式所模擬的潮汐以及潮流結果,加入SWAN模式中,來探討風力、潮汐以及潮流效應所造成的影響。在模式驗證中,探討加入水位因素後對於波場的影響。在底床為水平時,不同水位對波高變化沒有太大的影響;而在圓形淺灘處,高水位時波高亦較大,在低水位時波高則較小。在實際颱風案例的驗證中,由數值模擬與實際測站所測得的波高值比較發現,四種模式會隨著颱風行經路線及強度而導致誤差,影響因素的敏感度分別為風力大於潮流大於潮位。而在西部海岸,潮流的效應較為明顯。從實際案例中經由參數驗證得知,在SWAN模式中加入潮流效應會增加模式的準確性。
The wind-wave numerical model was broadly applied to wave prediction. A discussion of the effect due to wind, tide, and current is proceeded by SWAN model which the tide and current data are simulated by POM model. The variation of the wave height cause by water level is tested. The variation of the water level is irrelevant to wave height only if the bed is horizontal. In the verification, the path and the intensity of typhoon cause discrepancies between the computational result and the measurement. Considering the effect of current is suggested for the accuracy of SWAN model.
1. Bertotti, L. and L. Cavaleri, “Accuracy of Wind and Wave Evaluation in Coastal Regions,” Proc. 24th Int. Conf. Coastal Eng., pp. 57-67 (1994).
2. Blumberg, A.F., and G.L. Mellor, “A description of a three-dimensional coastal ocean circulation model.” in Three-Dimensional Coastal Ocean Models, American Geophysical Union, Washington, D.C.,. Vol. 4, edited by N.Heaps, pp.208(1987).
3. Booij, N., L.H. Holthuijsen and R.C. Ris, “The SWAN Wave Model for Shallow Water,” Proc. 25th Int. Conf. Coastal Eng., pp. 668-676 (1996).
4. Booij, N., L.H. Holthuijsen and IJ.G. Haagama,, “Comparison the Second-Generation HISWA Wave Model with the Third-Generation SWAN Wave Model ,” Proceedings of 5th International Workshop on Wave Hindcasting and Forecasting, Jan. 27-30, Melbourne, Florida, pp. 215-212(1998).
5. Bretschneider, C.L., “The Generation and Decay of Wind Waves in Deep Water,” Transaction American Geophysical Union, 33, No. 3, pp. 202-237 (1952).
6. Carteright, D. E. and R. D. Ray “Oceanic Tides form Geosat Altimetry,” Journal of Geophysical Reaearch, Vol. 95, No. C3, pp. 3069-3090(1990).
7. Cavaleri, L. and P. Malanotte-Rizzoli, “Wind Wave Prediction in Shallow Water Theory and Applications,” Journal of Geophysical Research, Vol. 86, No. C11, pp. 10961-10973(1981).
8. Groves, G. W. and R. W. Reynolds “An Orthogonalized Convolution Method of Tide Prediction,” Journal of Geophysical Research, Vol. 80, No. 30, pp. 4131-4138(1975).
9. Hasselmann, K., T.P. Barnett, E. Bouws, H. Carlson, D.E. Cartwright, K. Enke, J.A. Ewing, H. Gienapp, D.E. Hasselmann, P. Kruseman, A. Meerburg, P. Mller, D.J. Olbers, K. Richter, W. Sell and H. Walden, “Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP),” Dtsch. Hydrogr. Z. Suppl. 12, A8 (1973).
10. Hasselmann, K., “On the Spectral Dissipation of Ocean Waves due to Whitecapping,” Boundary-Layer Meteorology, 6, pp. 107-127 (1974).
11. Hasselmann, K., D.B. Ross, P. Mller and W. Sell, “A Parametric Wave Prediction Model,” J. Phys. Oceanogr., 6, pp. 199-228 (1976).
12. Hasselmann, S., K. Hasselmann, J.H. Allender and T.P. Barnett, “Computations and Parameterizations of the Linear Energy Transfer in a Gravity Wave Spectrum. Part II : Parameterizations of the Nonlinear Transfer for Application in Wave Models,” J. Phys. Oceanogr., 15, pp. 1378-1391 (1985).
13. Holthuijsen, L. H., N. Booij, R. C. Ris, J.H. Andorka Gal and J. C. M. de Jong, “An Verification of the Third-Generation Wave Model SWAN along the Southern North Sea Coast,” Proceedings 3rd International Symposium on Ocean Wave Measurement and Analysis, Waves’97, ASCE, pp. 49-63 (1997).
14. Hwang, C. and S-A. Chen “Fourier and Wavelet Analyses of TOPEX/POSEIDON-derived Sea Level Anomaly over the South China Sea Altimetry Data,” Journal of Geophysical Research, Vol. 105, pp. 28785-28804(2000).
15. Komen, G. J., S. Hasselmann, and K. Hasselmann, “On the Existence of a Fully Developed Wind-Sea Spectrum,” J. Phys. Oceanogr., 14, pp. 1271-1285 (1984).
16. Komen, G.J., “Introduction to Wave Models and Assimilation of Satellite Data in Wave Models, In: The Use of Satellite Data in Climate Models,” Proc. Alpbach Conference, ESA Pub., ESA SP, 244, pp. 21-26 (1985).
17. Komen, G.J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann and P.A.E.M. Janssen, Dynamics and Modeling of Ocean Waves, Cambridge University Press, pp. 532 (1994).
18. Matsumoto, K., M. Ooe and T. Sato “Ocean Tide Model Obtained from TOPEX/POSEIDON Altimetry Data,” Journal of Geophysical Research, Vol. 100, No. C12, pp. 25319-25330(1995).
19. Matsumoto, K., T. Takanezawa, and M. Ooe “Ocean Tide Model Developed by Assimilating TOPEX/POSEIDON Altimetry Data into Hydrodynamical Model: A Global and a-Regional Model around Japan,” Journal of Oceanography, Vol. 56, pp. 567-581(2000).
20. Munk, W. H. and D. E. Cartwright “Tidal Spectroscopy and Prediction,” Philosophy Transactions Royal Society London, Series A, Vol. 259, pp.533-581(1966).
21. Ou., S.H., J.M. Liau, T.W. Hsu and S.Y. Tzang, “Simulating Typhoon Waves by SWAN Wave Model in Coastal Waters of Taiwan,” Ocean Eng., 29, pp. 947-971 (2002).
22. Phillips, O.M., “Spectral and Statistical Properties of the Equilibrium Range in Wind-Generated Gravity Waves,” J. Fluid Mech., 156, pp. 505-531 (1985).
23. Pierson, W.J., G. Neumann and R.W. James, “Practical Method for Observing and Forecasting Ocean Waves by Means of Wave Spectra and Statistics,” US Navy Hydrographic Office, Pub. 603, pp. 284 (1955).
24. Pond, S. and G. L. Pickard Introductory Dynamic Oceanography, Pergmon Press, pp.193-209, London(1978).
25. Schwiderski, E. W. “On Charting Global Ocean Tides,” Geophysics and Space physics, Vol. 18, No. 1, pp. 243-265(1980).
26. Sverdrup, H.U. and W.H. Munk, “Wind, Sea and Swell, Theory of Relation for Forecasting,” US Navy Hydrographic Office, Pub. 601, pp. 44 (1947).
27. SWAMP Group, Ocean Wave Modeling, Plenum Press, New York, pp. 255 (1985).
28. WAMDI Group, “The WAM model-A Third Generation Ocean Wave Prediction Model”, Journal of Physical Oceanography, Vol. 18, pp. 1775-1810(1988).
29. Wilson, B.W., “Graphical Approach to The Forecasting of Waves in Moving Fetches,” US Army Corps of Engineers, Beach Erosion Board Tech. Memo., 73. pp. 1-31 (1955).
30. Wu, J., “Wind-Stress Coefficients over Sea Surface from Breeze to Hurricane,” J. Geophys. Res., 87, pp. 9704-9706 (1982).
31. 歐善惠、許泰文、臧效義、方介群、廖建明,「應用 SWAN 波浪模式推算台灣附近海域颱風波浪之研究」,第二十一屆海洋工程研討會論文集, 87頁 - 95頁 (1999)。
32. 方介群,「應用SWAN風浪模式推算台灣附近海域之颱風波浪」,國立成功大學水利及海洋工程研究所碩士論文 (2000)。
33. 廖建明,「近岸風浪推算之研究」,國立成功大學水利及海洋工程研究所博士論文 (2001)。
34. 廖建明、許泰文、溫志中、鄧秋霞,「近岸風浪模擬之研究」,第十二屆水利工程研討會,I-52頁 – I-59頁 (2001)。
35. 張憲國、黃金維,「以NAO99b潮汐模式預測台灣西岸潮汐之評估」,第二十三屆海洋工程研討會論文集, 105頁 - 111頁 (2001)。
36. 陳亞嵐,「近岸風浪推算資料同化之研究」,國立成功大學水利及海洋工程研究所碩士論文(2004)。
37. 林意淳,「POM模式應用於河口水動力計算之研究」,國立成功大學水利及海洋工程研究所碩士論文(2004)。
38. 李怡婷,「風浪模式計算最佳化之研究」,國立成功大學水利及海洋工程研究所碩士論文(2005)。