| 研究生: |
董家彬 Dong, Jia-Bin |
|---|---|
| 論文名稱: |
液壓裂岩機之裂岩機制研究 Rock Splitting Analysis of the Power Splitter |
| 指導教授: |
張瑞麟
Chang, Jui-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 有限元素分析程式ANSYS 、加載速率 、劈裂試驗 、楔型角 |
| 外文關鍵詞: | wedge angle, finite element analysis program ANSYS, loading rate, splitting |
| 相關次數: | 點閱:55 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本研究以平面應力假設並配合有限元素分析程式ANSYS 5.7版,針對裂岩機劈裂桿之性能,以不同的加載速率及楔型角度來進行數值模擬分析。此外,於實驗室進行小型劈裂模擬試驗,以五種不同之加載速率(5,15,25,35,45 ㎜/min),對兩組不同尺寸之試體(C組試體:0.4×0.4×0.09 m3,D組試體:0.32×0.68×0.09 m3),進行劈裂試驗;並以高速攝影機拍攝,藉以觀察裂縫開裂之過程。
在程式模擬方面,固定加載速率且變化大小不同之楔型角度,由最大張力處(A點)之應力值顯示,當楔型角愈大,將產生更大之側向徑向力。另外,分析尺寸效應問題,當劈裂路徑愈長,所得到之應力值愈小;但模擬變化不同之加載速率,以試體在同一長度(L),變化寬度(H)之作用下,1/4幾何形狀之X軸邊界上各點之應力值,無太大之變化。
實驗中,因試體尺寸及高速攝影機本身之限制,所以選擇1000張/秒)之拍攝速度,來擷取劈裂過程;且在10公分之尺標內,裂縫通過不到0.001s,故推估水泥砂漿試體裂縫傳播速率大於100 m/s。此外,以不連續面粗糙度(JRC值)之十個標準之粗糙剖面來量測破裂面粗糙度,其JRC值介於4到8之間;由JRC值之分佈顯示,當加載速率愈快,試體破裂面粗糙度之JRC值有愈大之趨勢。
關鍵字:有限元素分析程式ANSYS、加載速率、楔型角、劈裂試驗
Abstract
This study is performing data simulating analysis regarding the capability of Splitter’s thrust rod with different loading rates and wedge angles assuming plane stress in combination with finite element analysis program ANSYS 5.7. Besides, a few minor splitting simulating tests has been run in the laboratory using two different sizes of samples (sample C:0.4×0.4×0.09 m3,sample D:0.32×0.68×0.09 m3 ) with 5 sets of loading rates (5,15,25,35,45 ㎜/min) ; meanwhile, observing the progress of crack’s fracturing by high-speed video system.
In the program’s simulation at fixed loading rate with diverse wedge angles, the stress at the point (point A) with highest tension shows that the higher wedge angle result in a higher lateral radial stress. Furthermore, analyzing the dimension effects displays that the longer the splitting path is, the smaller the stress will be. However, when we simulate diverse loading rates, the stress values of every point remains less differential in the margin of x-coordinate of quadrant with same length (L) and diverse width (W) samples.
During the experiments, owing to the limit of sample’s size and high-speed video camera, we chose video speed of 1000 sheets per second to capture the splitting progress. In a 10cm measure, the crack will pass through less than 0.001s. So, we presume the transmitting speed of cracking cement-martar sample is more than 100 m/s. Furthermore, evaluate the roughness of crack plane by 10 standard rough profiles of Joint roughness coefficient (JRC), the JRC of samples are between 4~8. The distribution of JRC shows that the faster of loading rate goes, the tendency to higher value of JRC is.
Keyword:finite element analysis program ANSYS,loading rate,wedge angle,splitting
參考文獻
1.Anderson, S.J., Swanson, D.E., Capability evaluation of the radial-axial splitter, Bureau of Mines RI 9071, (1987).
2.Anderson, S.J., Drill-split mining with radial-axial loading splitters. Rock Mechanics Contribution and Challenges, Hustrulid and Johnson (eds), A.A. Balkema, Rotterdam, pp. 511-518, (1990).
3.Anderson, S.J., Drill-split-a versatile technology, Proceedings of the Third International Symposium on Mine Mechanization and Automation, Golden, Colorado, pp. 1637-1649, (1995).
4.ANSYS, Inc., ANSYS 5.7 User’s manual.
5.ANSYS, 網站, 2003, <http://www.ansys.com.>
6.Barton, N., Choubey, V., The shear strength of rock joints in theory and in practice. Rock Mech. Vol. 10, pp. 1-54, (1977).
7.Brown, E.T., Rock Characterization Testing and Monitoring: ISRM suggested methods, Pergamon press, Oxford, (1981).
8.Chollette, D., Clark, G.B. and Lehnhoff, T.F., Fracture Stresses Induced by Rock Splitters, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 13, pp. 281-287. (1976).
9.Cooley, W. C., Apparatus for breaking rock or concrete, U.S. Patent, (1982).
10.Cooper, G.A., Method and Apparatus for Breaking Hard Compact Material Such as Rock, Assigned to Institute CERAC SA, Ecublems, Switzerland, (1978).
11.Cooper, G.A., Berlie, J. and Merminod, A., A novel concept for a rock-breaking machine-Part Ⅱ: Excavation techniques and experiments at larger scale. Proc. R. Soc. London. A 373, pp. 353-372, (1980).
12.Goodman, R.E., Introduction to Rock Mechanics, pp. 389-408, John Wiley, N.Y., (1989).
13.Hadjigeorgiou, J., Ghanmi, A. and Paraszczak, J., 3-D numerical modeling of radial-axial rock splitting, Geotechnical and Geological Engineering, Vol. 16, pp. 45-57, (1998).
14.Jeffery, G. B., Plane stress and plane strain in bipolar co-ordinates, Phil. Trans. Roy. Soc. London, Ser. A. 221, (1921).
15.Kirsch, G. Z., Die theorie der elastizitat und die bedurfnisse festigkeitslehre, Veit Ver. Deutscher. Ing., Vol. 42, pp797-807, (1898).
16.Lee, Y. H., Carr, J., Barr, D. J. and Hass, C. J., The fractal dimension as a measure of the roughness of rock discontinuity profiles, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 27, pp. 453-464, (1990).
17.Nantel, J. H. and Kitzinger, F., Plasma blasting technique, Third International Symposium on Rock Fragmentation by Blasting, Brisbane, Queensland, Australia, August, pp. 26-31, (1990).
18.Obert, L. and Duvall, W. I., Rock Mechanics and the Design of Structures in Rock, John Wiley, N.Y., (1990).
19.Olsson, W. A., The compressive strength of tuff as a function of strain rate from 10-6 to 103/sec, Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr., Vol. 28, No. 1, pp. 115-118, (1991).
20.Paraszczak, J. and Hadjigeorgiou, J., Rock splitter as primary excavation technique. Proceeding of North American Tunneling conference, Denver, Colorado, Ozdemir and Brierley (eds), pp. 2B-35~2B-48, (1994).
21.Paraszczak, J., Dupont, P., Hadjigeorgiou, J. and Savard, M., Developing a mechanical hard rock splitter, Proc. of the Fourth International Symposium on Mine Planning and Equipment Selection, Calgray, Singhal et al. (eds), pp. 1029-1036, (1995).
22.Protze, B., Macdonald Tools Corporation, New Jersey, Private Communication, (1993).
23.Singh, S.P., Non-explosive applications of the PCF concept for underfround excavation, Tunneling and Underground Space Technology, Vol. 13, pp. 305-311, (1998).
24.Spotts, M.F., Working Stress in Design of Machine Element, pp. 91-131. Prentice-Hall, N.J., (1985).
25.Technical description of PCF non-explosive rock fragmentation and the ITC tunnel heading machine, Sunburst Excavation Inc. Denver, Colorado Doc., No. Rev5SEI-ITC, (1993).
26.Timoshenko, S. and Goodier, J. N., Theory of material containing a crack under mixed-mode loading, Proc. 28th U.S. Symp. Rock Mech., University of Arizona, Tucson, pp.383-390, (1987).
27.Veitch, L. W., Coal mining machine, U.S. Patent, (1908).
28.Zhong, D.W., Theory and Application of Cleavage Gun for Cutting Rock Materials, Explosive Materials, Vol. 28, pp. 30-33. (1999).
29.BP500油壓動力式岩層劈裂機操作手冊.
30.錢偉長,彈性力學,亞東書局,pp.204-211.,(1991).
31.張瑞麟,「石材礦業新式開採技術」,礦業技術,第二十八卷,第四期,pp. 330-343.,(1990).
32.林錦郎,蛇紋石材機械化開採之研究-以玉里地區為個案,國立成功大學資源工程學系碩士論文,(1998).