簡易檢索 / 詳目顯示

研究生: 黃皆智
Huang, Chieh-Chih
論文名稱: 成長高品質單晶氮化物材料於矽基板
The growth of high quality nitride-based material on silicon substrate
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 106
中文關鍵詞: 高品質氮化鎵奈米圖形化矽基板
外文關鍵詞: High quality GaN, Nano patterned Si substrate
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來在化合物半導體領域裡,矽基板越來越受到學者及業界的重視,因為矽基板擁有低成本、大面積及高熱導性的特性,因此在此論文中,我們嘗試成長高品質III-nitride材料於矽基板上。首先我們嘗試運用step-grading AlGaN插入層來成長高品質GaN於矽基板上,而step-grading AlGaN插入層可以有效的紓解因氮化鎵與矽(111)基板之間的晶格不匹配而產生的應力,並且也可有效的減少GaN中的差排密度,運用EPD的方式可以觀測到試片表面的缺陷密度為3.7×106 cm-2。由拉曼光譜量測可以發現GaN成長於step-grading AlGaN插入層上可以有效的減少磊晶層中的殘餘應力,所量測得到的磊晶層應力為0.23GPa,而運用XRD對磊晶層進行量測,可以得到較窄的半高寬 650 arcsec。
    另外,我們嘗試運用較複雜的漸變AlGaN緩衝層成長InN於矽基板, 漸變AlGaN中的Al配成比由100%緩減至0%,而由AFM的結果中可以發現運用較複雜的緩衝層來成長InN的試片表面為較粗糙的表面,利用霍爾量測InN磊晶薄膜可以得到較高的電子遷移率275cm2/v-s,且經由XRD量測可以發現InN中除了c-plane外還發現有r-plane的晶格結構。
    我們另外嘗試成長高品質GaN 矽(001)基板上與矽晶圓產業整合,在之前學者的研究中發現,GaN成長於Si(001)上容易生成兩種晶相,因此我們成長GaN於奈米及次微米尺寸圖形化基板上,且我們運用兩種圖型化基板來進行研究,其中一種為SiO2 recess patterned substrate 而另一種則為Si recess patterned substrate並藉由拉曼光譜來量測其內部殘餘應力,其中GaN成長於50nm SiO2 recess patterned substrate可以得到較低的殘餘拉伸應力0.023GPa,而藉由PL量測該試片可以得到最強的發光強度及最窄的半高寬,這個結果幾乎與未受應力影響的GaN材料相同。

    Recent years, the silicon substrate got more and more attention in the compound semiconductor field. Because of the silicon substrate has many advantages, like lower cost, larger scale, and higher thermal conductivities. Therefore, we try to grow the high quality III-nitride materials on the silicon substrate in this dissertation. First, we use the step grading AlGaN intermediate layers to grow the high quality GaN on Si(111) substrate. The grading AlGaN can effectively release the residual stress, which was produced by the larger lattice mismatch between the GaN and Si(111) substrate. The graded AlGaN intermediate layer also can decrease the dislocation densities in the GaN epilayer. The EPD results show the lower pit density 3.7×106 cm-2 on the surface of the GaN epi-layer, which was grown on graded AlGaN template. In the Raman spectra results show the graded AlGaN template can reduce the residual tensile stress to 0.23GPa in the GaN layer. We can get narrower FWHM in XRD results, which was 650arcsec.
    In the other way, we try to grow the InN material on Si(111) with the complex buffer layer. The complex buffer layer was formed with grading AlGaN (Al 100% ~ 0 %) buffer layer. The AFM images show the rougher surface morphology of the InN material. The results from Hall measurement show the InN grow on complex buffer layer, which got higher electron mobility 275cm2/v-s. The results of XRD indicated there are c-plane and r-plane crystal phases to exist in the InN epi-layer.
    We try to grew the high quality GaN on silicon substrate and integrate with the Si industry. Therefore, we grow the GaN on Si(001) substrate. In previous study, the GaN grow on Si(001) substrate that easily formed the two crystal phases in the GaN epi-layer. Therefore, we try to grew the GaN material on the nano and sub-micron scale patterned substrate. We used two kinds of nano patterned substrates to get high quality GaN. One is SiO2 recess patterned substrate, the other one is Si recess patterned substrate. In the results of the Raman spectra, we can observe these two kinds of patterned substrates release the residual stress effectively. In GaN on 50nm SiO2 recess patterned substrate, we can observe the lower tensile stress 0.023GPa. From the PL results, the GaN on 50nm SiO2 recess patterned Si(001) substrate shows the highest intensity and narrower FWHM of the emission peak. These results have almost same as the un-strain GaN material.

    Contents Abstract (in Chinese) II Abstract (in English) IV Acknowledgements VI Contents VIII Table Captions X Figure Captions XI Chapter 1 Introduction 1 1.1 Motivation of GaN on Si substrate. 1 1.2 Overview of GaN/Si heteroepitaxy 5 1.2.1 Structural properties 5 1.2.2 Growth of AlN nucleation layer 6 1.3 The architecture of the dissertation 7 Chapter 2 The Fundamental of MOCVD and Measurement 17 2.1 Introduction of MOCVD System 17 2.1.1 MOCVD reactor 21 2.2 In situ monitoring of epitaxial layer growth 22 2.2.1 Growth rate and layer thickness 23 2.2.2 Composition and ternary Materials 25 2.2.3 Surface quality 26 2.2.4 Advantage topic 27 2.2.5 True temperature measurement 27 2.3 The Raman measurement system 32 2.3.1 Instrumentation and Experimental Setup 32 Chapter 3 GaN grown on Si(111) with step-graded AlGaN buffer layers 47 3.1 Introductions 47 3.2 Experiments 49 3.3 Results and Discussions 50 3.4 Summary 53 Chapter 4 MOCVD growth of InN on Si(111) with various buffer layers 63 4.1 Introductions 63 4.2 Experiments 64 4.3 Results & Discussions 66 4.4 Summary 70 Chapter 5 The GaN layer prepared on nano patterned Si(001) substrate 79 5.1 Introductions 79 5.2 Experiments 81 5.3 The GaN on Si recess nano patterned Si(001) substrate 82 5.4 The GaN on SiO2 recess nano patterned Si(001) substrate 84 5.5 Summary 88 Chapter 6 Conclusion and Future Work 100 6.1 Conclusion 100 6.2 Future wok 101 Publication List 104 VITA 106

    Chapter 1

    [1] S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997).
    [2] M. Bockowski, Cryst. Res. Technol. 42, 1162 (2007).
    [3] Y. Kato, S. Kitamura, K. Hiramatsu, N. Sawaki, J. Cryst. Growth 144, 133 (1994).
    [4] A. Sakai, H. Sunakawa, and A. Usui, Appl. Phys. Lett. 71, 2559 (1997).
    [5] K. Linthicum, T. Gehrke, D. Thomson, E. Carlson, P. Rajagopal, T. Smith, D. Batchelor, and R. Davis, Appl. Phys. Lett. 75, 196 (1999).
    [6] H. Kazumasa, N. Katsuya, O. Masaru, M. Hiromitsu, N. Mitsuhisa, M. Atsushi, M.Hideto, I. Yasushi, and M. Takayoshi, J. Cryst. Growth 221, 316 (2000).
    [7] I. Kidoguchi, A. Ishibashi, G. Sugahara, and Y. Ban, Appl. Phys. Lett. 76, 3768 (2000).
    [8] S. Nakamura, S. Masayuki, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T, Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett. 72, 211 (1998).
    [9] K. Iida, T. Kawashima, A. Miyazaki, H. Kasugai, S. Mishima, A. Honshio, Y. Miyake, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. Part 2 43, L499-L500, (2004).
    [10] S. Kamiyama, M. Iwaya, S. Takanami, S. Terao, A. Miyazaki, H. Amano, I. Akasaki, Phys. Stat. Sol. A 192 296 (2002).
    [11] K. Iida, T. Kawashima, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, and A. Bandoh, J. Cryst. Growth 298, 265 (2007).
    [12] Website of Picogiga: http://www.soitec.com/picogiga/.
    [13] Website of Nitronex: http://www.nitronex.com/index.html.
    [14] Website of AZZURRO Semiconductors: http://azzurrosemeconductor.com.
    [15] Website of Shimei Semiconductor: http://www.shimeisemicon.com/
    [16] H. M. Manasevit, F. M. Erdmann, and W. J. Simpson, J. Electrochem. Soc. 118, 1864 (1971).
    [17] T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, and I. Akasaki, J. Cryst. Growth 115, 634 (1991).
    [18] A. Watanabe, T. Takeuchi, K. Kurosawa, H. Amano, and I. Akasaki, J. Cryst. Growth 128, 391 (1993).
    [19] J. W. Yang, C. J. Sun, Q. Chen, M. Z. Anwar, M. S. Khan, S. A. Nikishin, G. A. Seryogin, A. V. Osinsky, L. Chernyak, H. Temkin, C. Hu, and S. Mahajan, Appl. Phys. Lett. 69, 3566 (1996).
    [20] N. P. Kobayashi, J. T. Kobayashi, P.D. Dapkus, W. J. Choi, A. E. Bond, X. Zhang, and D. H. Rich, Appl. Phys. Lett. 71, 3569 (1997).
    [21] L. Wang, X. Liu, Y. Zan, J. Wang, D. Wang, D. Lu, and Z. Wang, Appl. Phys. Lett. 72, 109 (1998).
    [22] A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, Jpn. J. Appl. Phys. 39, L1183 (2000).
    [23] A. Dadgar, M. Poschenrieder, A. Diez, and A. Krost, Appl. Phys. Lett. 80, 3670 (2002).
    [24] J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, Appl. Phys. Lett. 81, 2722 (2002).
    [25] A. Dadgar, M. Poschenrieder, A. Reiher, J. Bläsing, J. Christen, A. Krtschil, T. Finger, T. Hempel, A. Diez, and A. Krost, Appl. Phys. Lett. 82, 28 (2003).
    [26] K. Y. Zang, Y. D. Wang, L. S. Wang, S. Y. Chow, and S. J. Chua, J. Appl. Phys. 101, 093502 (2007).
    [27] S. Tanaka, Y. Kawaguchi, N. Sawaki, M. Hibino, and K. Hiramatsu, Appl. Phys. Lett. 76, 2701 (2000).
    [28] A. Strittmater, S. Rodt, L. Reißmann, D. Bimberg, H. Schröder, E. Obermeier, T. Riemann, J. Christen, and A. Krost, Appl. Phys. Lett. 78, 727 (2001).
    [29] T. M. Katona, M. D. Craven, P. T. Fini, J. S. Speck, and S. P. DenBaars, Appl. Phys. Lett. 79, 2907 (2001).
    [30] A. Dadgar, A. Alam, T. Riemann, J. Bläsing, A. Diez, M. Poschenrieder, M. Strassburg, M. Heuken, J. Christen, and A. Krost, Phys. Stat. Sol. 188, 155 (2001).
    [31] Y. Honda, Y. Kuroiwa, M. Yamaguchi, and N. Sawaki, Appl. Phys. Lett. 80, 222 (2001).
    [32] S. D. Hersee, D. Zubia, X. Sun, R. Bommena, M. Fairchild, S. Zhang, D. Burckel, A. Frauenglass, and S. R. J. Brueck, J. Quantum Electronics 38, 1017 (2002).
    [33] S. D. Hersee, X. Y. Sun, X. Wang, M. N. Fairchild, J. Liang, and J. Xu, J. Appl. Phys. 97, 124308 (2005).
    [34] J. Liang, S. K. Hong, N. Kouklin, R. Beresford, and J. M. Xu, Appl. Phys. Lett. 83, 1752 (2003).
    [35] K. Y. Zang, Y. D. Wang, S. J. Chua, and L. S. Wang, Appl. Phys. Lett. 87, 193106 (2005).
    [36] L. S. Wang, S. Tripathy, B. Z. Wang, J. H. Teng, S. Y. Chow, and S. J. Chua, Appl. Phy. Lett. 89, 011901 (2006).
    [37] K. Y. Zang, Y. D. Wang, L. S. Wang, S. Tripathy, S. J. Chua, and C. V. Thompson, Thin Solid Films 515, 4505 (2007).
    [38] F. Schulze, A. Dadgar, J. Bläsing, T. Hempel, A. Diez, J. Christen, and A Krost, J. Cryst. Growth 289, 485 (2006).
    [39] F. Schulze, A. Dadgar, J. Bläsing, and A Krost, Appl. Phys. Lett. 84, 4747 (2004).
    [40] F. Schulze, A. Dadgar, J. Bläsing, A. Diez, and A Krost, Appl. Phys. Lett. 88, 121114 (2006).
    [41] F. Schulze, O. Kisel, A. Dadgar, A. Krtschil, J. Bläsing, M. Kunze, I. Daumiller, T. Hempel, A. Diez, R. Clos, J. Christen, and A. Krost, J. Cryst. Growth 299, 399 (2007).
    [42] Y. Honda, Y. Kawaguchi, Y. Ohtake, S. Tanaka, M. Yamaguchi, and N. Sawaki, J. Cryst. Growth 230, 346 (2001).
    [43] Y. Honda, N. Kameshiro, M. Yamaguchi, and N. Sawaki, J. Cryst. Growth, 242, 82 (2002).
    [44] T. Hikosaka, T. Tanikawa, Y. Honda, M. Yamaguchi, and N. Sawaki, Phys. Stat. Sol. (c) 1-4 (2008).
    [45] S. Tripathy, V. K. X. Lin, S. L. Teo, A. Dadgar, A. Diez, J. Bläsing, and A. Krost, Appl. Phys. Lett. 91, 231109 (2007).
    [46] Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
    [47] A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, Jpn. J. Appl. Phys. 39, L1183 (2000).
    [48] Landolt-Börnstein, III/41 A1a (Springer, Berlin/Heidelberg/New York, 2001)
    [49] R. Hull, Properties of crystalline silicon, (EMIS datareview series No. 20, 1999).
    [50] M. S. Shur and M. A. Khan, Mater. Res. Bull. 22, 44 (1997).
    [51] G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, J. Phys. Chem. Solids 48, 641 (1987).
    [52] E. K. Sichel and J. I. Pankove, J. Phys. Chem. Solids 38, 330 (1977).
    [53] Landolt-Börnstein, Vol. 17 (Spinger, New York, 1992).
    [54] Madelung, Semiconductors Group IV and III-V compounds (Spinger, Berlin, 1991).
    [55] Cree Inc., product specification.
    [56]A. Dadgar, M. Poschenrieder, J. Blasing, O. Contreras, F. Bertram, T. Riemann, A. Reiher, M. Kunze, I. Daumiller, A. Krtschil, A. Diez, A. Kaluza, A. Modich, M. Kamp, J. Christen, F. A. Ponce, E. Kohn, A. Krost, J. Cryst. Growth, 248, 556 (2003).

    Chapter 2

    [1] M. Kazumura, I. Ohta, and I. Teramoto, Jpn.J. Appl. Phys., Vol. 22, 654(1983).
    [2] H. M. Manasevit, Appl. Phys. Lett., Vol. 12, 156(1968).
    [3] H. M. Manasevit, F. Erdmann and W. Simpson, J. Electrochem. Soc., Vol. 118, 1864(1971).
    [4] S. P. DenBaar, B. Y. Maa, P. D. Dapkus and H. C. Lee, J. Cryst. Growth. Vol. 77, 188(1986).
    [5] M. Cardona, G. Guntherodt, Vol. I-Vol. VIII, Springer-Verlag, Berlin, 197-2000.
    [6] LAYTEC Inc., User’s manual.

    Chapter 3

    [1] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, IEEE J. Sel. Top. Quan. Electron. 8 (2002) 744.
    [2] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, Jpn. J. Appl. Phys. 34 (1995) L797.
    [3] H. Ishikawa, K. Yamanoto, T. Egawa, T. Soga, T. Jimbo and M. Umeno, J. Crystal Growth 189/190 (1998) 178.
    [4] A. Strittmatter, A. Krost and M. Strabburg, Appl. Phys. Lett. 74 (1999) 1242.
    [5] J. W. Yang, C. J. Sun, Q. Chen, M. Z. Anwar, M. Asif Khan, S. A. Nikishin and G. A. Seryogin, Appl. Phys. Lett. 69 (1996) 3566.
    [6] A. Watanabe, T. Takeuchi and K. Hirosawa, J. Crystal Growth 128 (1993) 391.
    [7] C. I. Park, J. H. Kang, K. C. Kim, E. K. Suh, K. Y. Lim and K. S. Nahm, J. Crystal Growth 224 (2001) 190.
    [8] A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken and A. Krost, Jpn. J. Appl. Phys. 39 (2000) L1183
    [9] E. Arslan, M. K. Ozturk, A. Teke, S. Ozcelik and E. Ozbay, Appl. Phys. A 41 (2008) 155317
    [10] K. Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykensm J. Derluyn, M. Germain, G. Van Tendeloo, J. Engelen and G. Borghs, J. Electron. Mater. 35 (2006) 592
    [11] S. Sakai, T. Wang, Y. Morishima and N. Naoi, J. Crystal Growth 221 (2000) 334.
    [12] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen and J. K. Sheu, IEEE J. Quantum. Electron. 38 (2002) 446.
    [13] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, IEEE J. Sel. Top. Quan. Electron. 8 (2002) 278.
    [14] S. C. Lee, X. Y. Sun, S. D. Hersee and S. R. J. Brueck, J. Crystal Growth 272 (2004)

    Chapter 4

    [1] D. Alexandrov, K. S. A. Butcher and M. Wintrebert-Fouquet, J. Cryst. Growth, 269 (2004) 77
    [2] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima and E. Kurimoto, Appl. Phys. Lett.. 81 (2002) 1246
    [3] A. G. Bhuiyan, A. Hashimoto and A. Yamamoto, J. Appl. Phys., 94 (2003) 2779
    [4] T. L. Tansley and C.P. Foley, J. Appl. Phys., 59 (1986) 3241
    [5] Z. L. Xie, R. Zhang, B. Liu, L. Li, C. X. Liu, X. Q, Xiu, H. Zhao, P. Han, S. L. Gu, Y. Shi and Y. D. Zheng, J. Cryst. Growth, 298 (2007) 409
    [6] A. Yamamoto, M. Tsujino, M. Ohkubo and A. Hashimoto, J. Cryst. Growth, 137 (1994) 415.
    [7] Y. C. Pan, W. H. Lee, C. K. Shu, H. C. Lin, C. I. Chiang, H. Chang, D. S. Lin, M. C. Lee and W. K. Chen, Jpn. J. Appl. Phys., 38 (1999) 645.
    [8] T. Tsuchiya, H. Yamano, O. Miki, A. Wakahara and A. Yoshida, Jpn. J. Appl. Phys., 38 (1999) 1884.
    [9] M. Higashiwaki and T. Matsui, Jpn. J. Appl. Phys. 41 (2002) L540.
    [10] J. Grandal, M.A. Sánchez-García, J. Cryst. Growth, 278 (2005) 373
    [11] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, IEEE J. Sel. Top. Quan. Electron., 8 (2002) 278.
    [12] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, IEEE J. Sel. Top. Quan. Electron., 8 (2002) 744.
    [13] A. Able, W. Wegscheider, K. Engl and J. Zweck, J. Crystal Growth, 276 (2005) 415.
    [14] B. Maleyre, S. Ruffenach, O. Briot, B. Gil and A. Van der Lee, Superlattice Microst. 36 (2004) 517

    Chapter 5

    [1] S. Nakamura, M. Senoh and T. Mukai, Jpn. J. Appl. Phys. 32 (1993) L8
    [2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, Jpn. J. Appl. Phys. 35 (1996) L74
    [3] Y. Z. Chiou, S. J. Chang, Y. K. Su, C. K. Wang, T. K. Lin and B. R. Huang, IEEE Tran. Electron. Dev. 50 (2003) 1748
    [4] M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi and J. M. Tsai, Appl. Phys. Lett. 82 (2003) 2913
    [5] P. Kung, D. Walker, M. Hamiton, J. Diaz and M. Razeghi, Appl. Phys. Lett. 74 (1999) 570.
    [6] S. Joblot, F. Semond, F. Natali, P. Vennéguès, M. Laügt, Y. Cordier and J. Massies, Phys. Status Solidi C 2 (2005) 2187
    [7] S. Nishimura, H. Hanamoto, K. Terashima and S. Matsumoto, Mater. Sci. Eng. B 93 (2002) 135
    [8] F. Schulze, A. Dadgar, J. Bläsing and A. Krost, Appl. Phys. Lett. 84 (2004) 4747.
    [9] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke, C. W. Kuo, S. C. Chen and C. H. Liu, Solid-State Electron. 47 (2003) 1539.
    [10] Y. Honda, Y. Kawaguchi, Y. Ohtake, S. Tanaka, M. Yamaguchi and N. Sawaki, J. Cryst. Growth 230 (2001) 346.
    [11] N. P. Kobayashi, J. T. Kobayashi, X. Zhang, P. D. Dapkus and D. H. Rich, Appl. Phys. Lett. 74 (1999) 2836.
    [12] A. Alizadeh, P. Sharma, S. Ganti, S. F. Leboeuf and L. Tsakalakos, J. Appl. Phys. 95 (2004) 8199
    [13] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li and C. C. Kao, J. Crystal Growth 311 (2009) 2973
    [14] B. J. Kim, M. A. Mastro, H. Jung, H. Y. Kim, S. H. Kim, R. T. Holm, J. Hite, C. R. Eddy Jr., J. Bang and J. Kim, Thin Solid Films 516 (2008) 7744
    [15] J. Lee, D. H. Kim, J. Kim and H. Jeon, Current Appl. Phys. 9 (2009) 633
    [16] L. C. Chen, C. K. Wang, J. B. Huang and L. S. Hong, Nanotechnol. 20 (2009) 085303
    [17] A. Dadgar, J. Blasing, A. Diez, A. Alam, M. Heuken, A. Krost, Jpn. J. Appl. Phys. 39 (2000) L1183.
    [18] X. L. Sun, H. Yang, L. X. Zheng, D. P. Xu, J. B. Li, Y. T. Wang, G. H. Li, Z. G. Wang, Appl. Phys. Lett. 74 (1999) 2827.
    [19] Z. X. Liu, A. R. Goni, K. Syassen, H. Siegle, C. Thomsen, B. Schoettker, D. J. As, D. Schikora, J. Appl. Phys. 86 (1999) 929.
    [20] S. C. Lee, X. Y. Sun, S. D. Hersee and S. R. J. Brueck, J. Crystal Growth 272 (2004) 2
    [21] D. D. Manchon Jr., A. S. Barker Jr., P. J. Denn and R. B. Zatterson, Solid State Commun. 8 (1970) 1227.
    [22] L. A. Falkovsky, W. Knap, J. C. Chervin and P. Wisnievski, Phys. Rev. B 57 (1998) 11349.
    [23] T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide and K. Manabe, J. Appl. Phys. 77 (1995) 4389.
    [24] B. H. Bairamov, O. Guerdal, A. Botchkarev, H. Morkoc, G. Irmer and J. Monecke, Phys. Rev. B 60 (1999) 16741.
    [25] S. Tripathy, S. J. Chua, P. Chen and Z. L. Miao, J. Appl. Phys. 92 (2002) 3503.
    [26] M. Kuball, Surf. Interface Anal. 31 (2001) 989.
    [27] K. Y. Zang, Y. D. Wang, S. J. Chua, L. S. Wang, S. Tripathy, C. V. Thompson, Appl. Phys. Lett. 88 (2006) 141925.

    Chapter 6

    [1] C. C. Huang, S. J. Chang, R. W. Chung, J. C. Lin, Y. C. Cheng, W. J. Lin, Applied Surface Science, 256(2010), 6367.
    [2] C. C. Huang, R. W. Chung, S. J. Chang, J. C. Lin, Y. C. Cheng, W. J. Lin, Journal of Electronic Materials, 37(2008), 1054.
    [3] C. C. Huang, S. J. Chang, C. H. Kuo, C. H. Ko, Clement H, Wann, Y. C. Cheng, W. J. Lin, Journal of Nano-science and Nano-technology, 10(2010), 1.

    下載圖示 校內:2013-01-25公開
    校外:2015-01-25公開
    QR CODE