| 研究生: |
陳瑋亭 Chen, Wei-Ting |
|---|---|
| 論文名稱: |
純化血漿中Aβ結合蛋白作為阿茲海默氏症的生物性指標 Isolation and characterization of plasma A-beta binding proteins as biological markers of AD |
| 指導教授: |
郭余民
Kuo, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 28 |
| 中文關鍵詞: | 貝它類糊蛋白 、阿茲海默氏症 |
| 外文關鍵詞: | Aβ, AD |
| 相關次數: | 點閱:56 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
阿茲海默氏症(Alzheimer’s disease,以下簡稱阿氏症) 是一種會隨年紀增長而提高罹患率的神經退化性疾病,亦是最常見的失智症(dementia)。阿氏症的潛伏期很長,大部分的患者被醫師診斷為阿氏症時常已屬中晚期之患者,此時再 予以投藥往往效果不彰。所以,尋找一個可及早診斷阿氏症的生物性指標至為重要。阿氏症主要有兩種病變:1) 腦細胞外堆積許多呈纖維狀的神經細胞有毒分子-貝它類糊蛋白(β-amyloid peptide );2) 神經細胞內聚集異常磷酸化tau蛋白所形成之神經纖維絮 (neurofibrillary tangles)。在先前的研究顯示,腦組織中的貝它類糊蛋白可在中樞的腦脊髓液(cerebrospinal fluid) 和周邊的血清/血漿(serum/plasma) 被偵測出,且會與許多血清蛋白結合。最近更有報告指出,在周邊血清中注射貝它類糊蛋白的抗體,可有效降低大腦中貝它類糊蛋白的含量。 因此,本實驗的目的有:1) 純化並分析血漿中貝它類糊蛋白結合蛋白的身份;與2) 研究這些貝它類糊蛋白結合蛋白的含量是否可作為阿氏症的生物性指標。我們利用avidin-biotin沉澱法,凝膠電泳(gel electrophoresis),以及質譜儀(mass spectrometry),來尋找並確認血清中貝它類糊蛋白結合蛋白的身份。結果發現在阿氏症中有4個蛋白質(apolipoproteinA-1、apolipoprotein C3、apolipoprotein E 和α-1-antitrypsin) 的量有明顯增加。再以酵素結合免疫吸附法(ELISA) 比較200 個醫師確診的阿氏症病人和35個無失智的健康成人血清中貝它類糊蛋白結合蛋白的濃度。結果顯示,病人的血漿中apolipoprotein E的量比健康成人多,且達到顯著差異。但apolipoprotein A1、apolipoprotein C3 、α-1-antitrypsin在病人的量雖略高於健康成人,卻沒有達到顯著差異。以性別區分的結果亦同。
Alzheimer’s disease (AD) is an age-related neurodegenerative disease. The neuropathology of AD is characterized by fibrillar β-amyloid (Aβ) peptide and the neurofibrillary tangles made of the cytoskeletal protein tau. Previously, we and others have shown that Aβ peptides can be detected in the cerebrospinal fluid and plasma in where they interact with several plasma proteins. More recently, it has been demonstrated that perfusion of Aβ antibodies into blood of AD transgenic mice effectively reduces the levels of Aβ in brains. Therefore, the specific aims of this study are to 1) isolate and characterize the plasma Aβ binding proteins, and 2) determine whether these plasma Aβ binding proteins can serve as sensitive and specific AD biomarkers. The plasma Aβ binding proteins were isolated from plasma using combination techniques of avidin-biotin pull-down assay, protein gel electrophoresis and mass spectrometry. We identified four plasma Aβ binding proteins: apolipoprotein A-1, apolipoprotein C3, apolipoprotein E and α-1 antitrypsin. Using ELISA to measure the levels of the four Aβ binding proteins in plasma of 200 AD patients and 35 non-demented controls, we found that the concentrations of apolipoprotein E were higher than those of non-demented controls; whereas, the concentrations of apolipoprotein A-1, apolipoprotein C3 and α-1 antitrypsin were not different between AD and non-demented controls cohorts. The results remained the same when the populations were devided by gender.
Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K,
Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I,
Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, et al. (2000).
Peripherally administered antibodies against amyloid beta peptid enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med, 6, 916-919.
Brookmeyer, R., Johnson, E., & Ziegler-Graham, A. H. M. (2007). Forecasting
the global burden of Alzheimer’s disease. Alzheimer’s and Dementia, 3, 186-191.
Deane R, Sagare A, Hamm K, Parisi M, LaRue B, Guo H, Wu Z, Holtzman DM,
Zlokovic BV (2005). IgG-assisted age-dependent clearance of Alzheimer’s
amyloid peptide by the blood-brain barrier neonatal Fc receptor. J Neurosci, 25, 11495-11503.
Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, Xu F, Parisi M, LaRue
B, Hu HW, Spijkers P, Guo H, Song X, Lenting PJ, Van Nostrand WE, Zlokovic
BV (2004). LRP/amyloid beta-peptide interaction mediates differential brain
efflux of Abeta isoforms. Neuron, 43, 333-344.
Deance R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, Welch
D, Manness L, Lin C, Yu J, Zhu H, Ghiso J, Frangione B, Stern A, Schmidt Am,
Armstrong DL, Arnold B, Liliensiek B, Nawroth P, Hofman F, et al., (2003).
RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med, 9, 907-913.
DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul Sm, Holtzman DM,
(2001). Peripheral anti-Abeta antibody alters CNS and plasma Abeta clearance and decreases brain Abeta burden in a mouse model of Alzheimer’s disease. Proc NatlAcadSci USA, 98, 8850-8855.
Ferreira, S. T., Vieira, M. N., & De Felice, F. G. (2007). Soluble protein
oligomers as emerging toxins in Alzheimer’s and other amyloid disease. Iubmb Life, 59, 332-345.
Glenner, G, G., & Wong, C. W. (1984). Alzheimer’s disease: Initial report of
purification and characterization of a novel cerebrovascular amyloid protein.Biochemical and Biophysical Research Communications, 120, 885-890.
Gralle, M., & Ferreira, S. T. (2007). Structure and functions of the human
amyloid precursor protein: The whole is more than the sum of its parts. Progress in Neurobiology, 82, 11-32.
Haass, C., &Selkoe, D. J. (2007). Soluble protein oligomers in
neurodegeneration: Lessons from the Alzheimer’s amyloid-beta peptide. Nature Reviews Molecular Cell Biology, 8, 101-112.
Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid
cascade hypothesis. Science, 256, 184-185.
Hardy, J., &Slkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 297, 353-356.
Holtzman DM, Bales KR, Paul SM, DeMattos RB, (2002). Abeta immunization
and anti-Abeta antibodies: potential therapies for the prevention and treatment of Alzheimer’s disease.Adv Drug Deliv Rev, 54, 1603-1613.
Kalaria, R. N., Maestre, G. E., Arizaga, R., et al. (2008). Alzheimer’s disease and vascular dementia in developing countries: Prevalence, managent, and risk factors. Lancet Neurology, 7, 812-826.
Klein, W. L. (2006). Synaptic targeting by Aboligomers (ADDLS) as a basis for
memory loss in early Alzheimer’s disease. Alzheimer’s Dement, 2, 43-55.
Lacor, P. N., Buniel, M. C., Furlow, P. W., et al. (2007). Abetaoligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. Journal of Neuroscience, 27, 796-807.
Lambert, M. P., Barlow, A. K., Chromy, B. A., et al. (1998). Diffusible,
Non fibrillar ligands derived from Abeta 1-42 are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences of the United States of America, 95, 6448-6453.
Lemere C, Spooner ET, LaFrancois J, Malester B, Mori C, Leverone JF,Matsuoka Y, Taylor JW, DeMattos RB, Holtzman DM, Clements JD, Selkoe DJ, Duff K, (2003). Evidence for peripheral clearance of cerebral Abeta protein following chronic, active Abeta immunization in PSAPP mice. NeurobiolDis, 14, 10-18.
Melinda A., McFarland, Christopher E. Ellis, Sanford P. Markey and Robert L.
Nussbaum, (2008). Magnetic bead-based DNA detection with multi-layers
quantum dots labeling for rapid detection of Escherichia coli O157:H7.
Molecular & Cellular Proteomics, 7, 2123-2137.
M. Chevallet, S. Luche, T. Rabillooud, (2006). Silver staining of proteins in
polyacrylamide gels. Nat. Protocols, 1, 1852-1858.
Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, HuK, Huang J,
Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter
R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, et al. (1999).
Immunization with amyloid-beta attenuates Alzheimer-disease like pathology in the PDAPP mouse. Nature, 400, 173-177.
Schenk D, Hangen M, Seubert P. (2004). Current progress in beta-amyloid
immunotherapy. CurrOpinImmunol, 16, 599-606.
Selkoe, D. J., Yamazaki, T., Citron, M., et al. (1996). The role of APP processing and trafficking pathways in the formation of amyloid beta-protein. Annals of the New York Academy of Sciences, 777, 57-64.
Shankar, G. M., Li, S., Mehta, T. H., et al. (2008). Amyloid-beta protein
dimmers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature Medicine, 14, 837-842.
Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman
DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV. (2000). Clearance of
Alzheimer’s amyloid-ss (1-40) peptide from brain by LDL receptor related
protein-1 at the blood-brain barrier. J Clin Invest, 106, 1489-1499.
Walsh, D. M., Klyubin, I., Fadeeva, J. V., et al. (2002). Naturally secreted
oligomers of amyloid beta protein potently inhibit hippocampal long-term
potentiation in vivo. Nature, 416, 535-539.
Wang, X., Su, B., Zheng, L., Perry, G., Smith, M.A.,& Zhu, X. (2009). The role
of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. Journal of Neurochemistry, 109, 153-159.
校內:2020-12-31公開