| 研究生: |
張仕旻 Chang, Shih-Min |
|---|---|
| 論文名稱: |
利用薄膜反應器於高溫厭氧產氫生物程序之研究 Research on Membrane Bioreactor Applied for Thermophilic Anaerobic Hydrogen Production |
| 指導教授: |
鄭幸雄
Cheng, Sheng-Shung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 複合性基質 、生物薄膜反應槽 、高溫厭氧產氫 、生物產氫 |
| 外文關鍵詞: | biomembrane reactor, Biohydrogen production, thermophilic anaerobic hydrogen production, multiple substrates |
| 相關次數: | 點閱:82 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著化石燃料的逐漸耗盡,尋找替代能源已成為未來重要課題之一,且燃燒化石燃料排放大量的二氧化碳、一氧化碳、氮氧化合物及硫化物等污染物因而導致全球氣候變遷,因此,環境保護與永續發展以漸成為目前環保技術研究開發的指導方針。生物產氫技術具有資源再利用與乾淨能源生產等優點,符合永續發展之需求,並且可同時改善環境保護及能源短缺等問題。
本研究主要在於高溫(55 ℃)厭氧產氫反應之探討,利用薄膜反應槽進行高溫厭氧產氫反應,基質為蔗糖與peptone混合的複合性基質,結果發現,薄膜反應槽確實能達到污泥截留之功能,有效提昇反應槽中污泥濃度,並且使出流水的固體物含量小於10 mg/L。在水力停留時間為6小時,污泥停留時間為2天的操作條件下,最佳的產氫速率為110.1 mmol H2/g VSS/day,平均產氫量為673 mmol H2/L/day,氫氣濃度為57%,基質產氫率為8.4 mmol H2/g COD。主要產物除了氫氣及二氧化碳外,液相的副產物為乙酸、丁酸及乙醇,其中以丁酸濃度最高。當食微比小於7.7 g COD/g VSS/day時,產氫速率會下降。利用電子顯微鏡觀察高溫厭氧產氫菌的型態,主要為桿菌及帶有內生孢子的厭氧菌為主。而由DGGE指紋圖可發現,高溫厭氧產氫菌相較於中溫產氫菌,具有較高的GC含量。
在高溫厭氧產氫反應中,有機物經由微生物轉化成氫氣、二氧化碳、有機酸及醇類,雖只有10 %的COD會轉化成氫氣而離開系統中,但能有效地將有機物轉化成有機酸及醇類,出流水以利於光合產氫菌之利用。環境影響因子方面,溫度的下降會降低產氫菌的產氫活性,產氫菌的activation enthalpy為60.6 kJ/mol。至於pH值的下降會延長微生物適應環境的時間,影響微生物初期的生長。對於高溫厭氧產氫菌,分子態的乙酸抑制濃度為0.036 – 0.085 M,而鉀離子與鈉離子相比較,鉀離子對於產氫菌之產氫行為有較大的負面影響。於高溫厭氧產氫實驗中,添加0.1 M KH2PO4可減少pH值的下降,提昇產氫速率但會降低氫氣的生成。
Due to the consumption of fossil fuel and production of green house gases (i.e., methane and carbon dioxide), developing clean and new energy will be one of the important researches in the further. Hydrogen, high energy yield (122 KJ/g, about 2.75 times greater than that of hydrocarbon fuels), is considered a promising candidate as an ideal and clean source of energy. Biohydrogen production process not only can solve environmental pollution, but also achieve resource recycling. Hence, hydrogen production via bioprocesses may have a great potential to provide a cheap, clean and sustainable energy in the further and deserves to have further investigations.
This study aimed at thermophilic (55 ℃) anaerobic hydrogen production reaction that digested the multiple substrates (sucrose and peptone). To achieve this purpose, biomembrane reactor, which could control biomass concentration in the reactor, was performed. Under hydraulic retention time (HRT) of 6 hrs and sludge retention time (SRT) of 2 days condition, maximum specific hydrogen production rate, amount of hydrogen production and hydrogen yield were 110.1 mmol H2/g VSS/day, 673 mmol H2/L/day and 16.8 mmol H2/g COD, respectively. As F/M value was low 4 g COD/g VSS/day,specific hydrogen production rate would decrease. The morphology of thermophilic anaerobic hydrogen producing bacteria was rod and endspore-formation. From DGGE fingerprint, the GC content of thermophilic anaerobic hydrogen producing bacteria was higher than mesophilic anaerobic hydrogen producing bacteria.
In thermophilic (55 ℃) anaerobic hydrogen production process, only 10 % COD converted to hydrogen and most carbohydrate converted to acids and ethanol.Factors infuenced the hydrogen production, the lower temperature and lower pH value would make the activity of hydrogen producing bacteria decrease. In the BHP test, the results revealed that the activation enthalpy of hydrogen producing bacteria was 60.6 kJ/mol and inhibition concentration of molecular acetate was 0.036 – 0.085 M. Comparing the addition of sodium and potassium ion for thermophilic hydrogen producing bacteria, the hydrogen producing bacteria were more sensitivity with potassium ion.
白明德 (1999) “厭氧生物產氫機制與程序操作策略之研究”, 國立成功大學環境工程研究所碩士論文。
陳晉照 (2002) “CSTR系統厭氧產氫之研究”,逢甲大學土木及水利工程研究所博士論文。
黃俊霖 (2001) “以分子生物技術探討厭氧生物產氫程序之菌群結構”, 國立中央大學環境工程研究所碩士論文。
白明德、鄭幸雄 (2001) 基質組成之glucose/peptone對厭氧氫發酵反應與微生物生長的影響. 第26屆廢水處理研討會論文摘要集, 1-80。
林秋裕、陳晉照、林明正 (1999a) Hydrogen production in anaerobic acidogenesis process-influence of therma isolation and incubation environment. 第24屆廢水處理研討會論文集, 21-26。
林秋裕、林明正、陳晉照 (1999b) pH控制對懸浮性厭氧微生物之影響. 第24屆廢水處理研討會論文集, 21-26。
林秋裕、周家弘 (2000a) ASBR法應用於懸浮性厭氧微生物產氫之研究, 345-350。第25屆廢水處理研討會論文集, 357-361。
林秋裕、林明正、周家弘 (2000b) CSTR反應槽馴養不同污泥之產氫能力探討. 第25屆廢水處理研討會論文集, 362-367。
林秋裕、周家弘、賴奇厚 (2001a) ASBR反應相/沉降相時間比與產氫效率之關係. 第26屆廢水處理研討會論文摘要集, 1-73。
林明瑞、盧重興、邱毓明、賴欣宏 (2000c) 四種反應槽厭氧產氫效率之比較研究. 第25屆廢水處理研討會論文集, 345-350。
林明瑞、盧重興、賴欣宏、邱毓明(2000d) 四種反應槽其厭氧產氫反應動力學之模擬研究. 第25屆廢水處理研討會論文集, 351-356。
林明瑞、盧重興、楊聰宏、賴欣宏 (2001b) 溫度、pH對柱塞流式與無攪拌式反應之發酵產氫效率的影響比較. 第26屆廢水處理研討會論文摘要集, 1-72。
林明瑞、盧重興、賴欣宏、楊聰宏 (2001c) 不同操作條件對CSTR發酵產氫效率之影響及反應動力學之模擬研究. 第26屆廢水處理研討會論文摘要集, 1-83。
林信一、蔡瀛逸、吳柔賢 (2001d) 水解生物污泥厭氧消化產氫之研究. 第26屆廢水處理研討會論文摘要集, 1-85。
吳石乙、林祺能、陳英如、李國興、林秋裕、張嘉修 (2001a) 流化床中厭氧生物產氫之水力動力性質. 第26屆廢水處理研討會論文摘要集, 1-70。
吳石乙、吳政潔、林祺能、陳韋蒨、李國興、林秋裕、張嘉修 (2001b) 產氫污泥固定化之特性與製備方法. 第26屆廢水處理研討會論文摘要集, 1-71。
李國興、謝家琦、劉宏秀、汪玉婷、林祺能、林屏杰、林秋裕、張嘉修 (2001) 以顆粒化產氫污泥固定床進行連續式厭氧產氫之操作. 第26屆廢水處理研討會論文摘要集, 1-86。
范姜楷、王惠君、李國興、楊立豪、林屏杰、林秋裕、張嘉修 (2001) 以生活污泥進行連續是產氫發酵與氫氣純化. 第26屆廢水處理研討會論文摘要集, 1-68。
姚厚帆、翁巧玲、李國興、林屏杰、林秋裕、張嘉修 (2001) 以生物膜填充床反應器進行氫氣發酵. 第26屆廢水處理研討會論文摘要集, 1-29。
施翠盈、許恆維、劉憶芬、曾怡禎 (2001) 本土性梭菌屬產氫菌株之生理特性. 第26屆廢水處理研討會論文摘要集, 1-82。
涂良君、李季眉 (1999) 產氫光合作用細菌之分離與產氫之特性. 第24屆廢水處理研討會論文集, 173-178。
秦咸隆、方維霖、陳如學、黃淑旻、周志雄 (2001) 利用饋料式厭氧發酵技術生產氫氣. 第26屆廢水處理研討會論文摘要集, 1-87。
康美祝、陳心潔、許鎮龍、歐陽嶠暉 (2001) 薄膜生物反應器(MBR)再不同水力停留時間及消化液回流比之處裡特性. 第26屆廢水處理研討會論文摘要集, 1-39。
張肇栓、林屏杰、張嘉修 (2000) 連續式中空纖維微過濾膜反應器在染料廢水生物處理之應用. 第25屆廢水處理研討會論文集, 1-5。
張逢源、周家弘、林秋裕 (2001) UASB與ASBR反應槽產氫能力之探討. 第26屆廢水處理研討會論文摘要集, 1-74。
曾怡禎、許恒維、陳佳隆 (2000) 梭菌屬(Clostridium)的分離及其產氫活性的影響因子. 第25屆廢水處理研討會論文集, 315-320。
董昀昌、李季眉、林瑤玓 (2001) 產氫光合作用細菌利用厭氧產氫程序放流水的產氫能力研究. 第26屆廢水處理研討會論文摘要集, 1-75。
賴奇厚、陳晉照、林秋裕、林屏杰、張嘉修 (2001) 營養鹽類對厭氧產氫之影響. 第26屆廢水處理研討會論文摘要集, 1-69。
黃俊霖、陳晉照、林秋裕、劉文佐 (2000a) 以分子生物技術進行厭氧生物產氫菌群結構之研究. 第25屆廢水處理研討會論文集, 321-326。
黃正賢、林信一、蔡瀛逸、謝炎恭 (2000b) 以不同基質及培養方式探討厭氧消化產氫之初期研究. 第25屆廢水處理研討會論文集, 327-332。
蔡瀛逸、林信一、黃正賢、謝炎恭、吳柔賢 (2000) 不同厭氧程序控制對單純溶解性基質產氫之研究. 第25屆廢水處理研討會論文集, 333-337。
蔡瀛逸、林信一、吳柔賢 (2001) 不同厭氧消化程序控制產氫之基質特性變異研究. 第26屆廢水處理研討會論文摘要集, 1-84。
鄭幸雄、曾怡禎、白明德 (1999) 厭養生物分酸化蛋白質有機物產氫行為與產氫程序之研究. 第24屆廢水處理研討會論文集, 27-32。
鄭幸雄、曾怡禎、白明德 (2000a) 厭氧生物乙酸化分解蛋白質有機物的生物產氫行為與產氫動力模式. 第25屆廢水處理研討會論文集, 299-304。
鄭幸雄、白明德、張仕旻、吳坤龍、陳文欽、陳文卿 (2000b) 厭氧生物分解水解污泥產氫之可行性之研究. 第25屆廢水處理研討會論文集, 305-309。
鄭幸雄、張仕旻 (2000c) 高溫厭氧產氫菌群分解peptone之脫氮機制之研究. 第25屆廢水處理研討會論文集, 310-314。
鄭幸雄、李東峰、梁德明 (2000) 實廠厭氧生物反應槽產氫現象. 第25屆廢水處理研討會論文集, 388-392。
鄭幸雄、彭欽鑫、林泓湚 (2000d) 厭氧生物產氫在脫氨過程中所扮演角色. 第25屆廢水處理研討會論文集, 393-398。
鄭幸雄、白明德、蕭嘉瑢、趙禹杰、楊雅斐 (2001a) 氫氣分壓對厭氧產氫菌分解不同有機物之影響. 第26屆廢水處理研討會論文摘要集, 1-75。
鄭幸雄、張仕旻 (2001b) 乙酸在不同pH值環境下對於高溫厭氧產氫菌之影響. 第26屆廢水處理研討會論文摘要集, 1-79。
鄭幸雄、林秋裕、曾怡禎、李季眉、林信一、林明瑞、劉文佐、陳錫添 (2001c) 發酵與光合產氫組合程序處裡有機廢液的反應機制及應用性探討. 第26屆廢水處理研討會論文摘要集, 1-81。
鄭幸雄、林秋裕、曾怡禎、李季眉、林信一、林明瑞、劉文佐、陳錫添 (2001d) 厭氧生物產氫機制及程序控制之技術研發概論. 工業污染防治. 79: 173 - 193。
謝淵林、曾四恭、張育傑(2000) 利用中空矽膠管薄膜生物反應槽進行廢水同時硝化脫硝之反應. 第25屆廢水處理研討會論文集, 270-274。
蕭景庭、李季眉、董昀昌 (2000) 不同產氫光合作用細菌之最佳產氫條件研究, 338-344。
Adams, M. W. W., L. E. Mortenson, and J. S. Chen. 1980. Hydrogenase. Biochim. Biophys. Acta. 594: 105-176.
Adams M. W. W., and E. I. Stiefel. 1998. Biological hydrogen production: not so elementary. Science. 282: 1842-1843.
Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial population. Appl. Environ. Microbiol. 56: 1919-1925.
Andel, J. G., G. R. Zoutberg, P. M. Crabbendam, and A. M. Breure. 1985. Glucose fermentation by Clostridium butyricum growth under a self generated gas atmosphere in chemostat culture. Appl. Microbiol. Biotechnol. 23: 21-26.
Andreesen J. R., H. Bahl, and G. Gottschalk. 1989. Introduction to the physilogy and biochemistry of genus Clostridium. In: Clostridia, Minton N. P. and Clark J. D. (ed.) Plenum Press. New York. pp. 27-62.
APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th edition. American Public Health Association, New York, USA.
Assobhei O., A. E. Kanouni, M. Ismaill, M. Loutfi, and H. Petitdemange. 1998. Effect of acetic and butyric acids on the stability of solvent and spore formation by Clostridium acetobutylicum ATCC 824 during repeated subculturing. Journal of Fermentation and Bioengineering. 85: 1998.
Bailey A. D., G. S. Hansford, and P. L. Dold. 1994. The enhancement of upflow anaerobic sludge bed reactor performance using crossflow microfiltration. Water Res. 28: 291-295.
Bai, M. D., S. S. Cheng, and I. C. Tseng. 2001. Biohydrogen produced due to peptone degradation by pretreated seed sludge. Proc. of the 1th IWA Asic-Pacific Regional Conference on ASIAN WATERQUAL.
Baronofsky J. J., W. J. A. Schreurs, and E. V. Kashket. 1984. Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermaceticum. Appl. Environ. Microbiol. 48:1134-1139.
Brosseau, J. D., and J. E. Zajic. 1982. Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. Journal Chemical Technology and Biotechnology. 32: 496-502.
Bouhabila, E. H., R. B. Aim, and H. Buisson. 2001. Fouling characterization in membrane bioreactors. Separation and Purification Technology. 22 – 23: 123 – 132.
Chang, C. N., C. C. Chiu, C. P. Ho, and Y. S. Ma. 2000. Recovering dosmestic wastewater by submerged membrane bioreactor (SMBR). 第25屆廢水處理研討會論文集, 145-150。
Chen, J. S., L. E. Mortenson. 1974. Purification and properties of hydrogenase from Clostridium pasteuriamun W5. Biochim. Biophys. Acta. 371: 283-298.
Chen, C. K., and H. P. Blaschek. 1999. Effect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration. Appl. Environ. Microbiol. 65:499-505.
Chen, C. C., and C. Y. Lin. 2000. Using sewage sludge as seed in an anaerobic hydrogen producing reactor. 第25屆廢水處理研討會論文集, 368-372。
Chen, C. C., and C. Y. Lin. 2000. Influence of substrate on anaerobic hydrogen producting reactors seeded with sewage sludge. 第25屆廢水處理研討會論文集, 373-377。
Cheng, S. S., I. C. Tseng., and M. D. Bai. 1999. Behavior study of anaerobic hydrogenation from different organic substrates with selected hydrogen production bacteria. Proc. of the 7th IWA Asic-Pacific Regional Conference, 1, Taipei, Taiwan. 759-764.
Cheng, S. S., S. T. Chen, and M. D. Bai. 2000. Biohydrogenation in general-how does it work and how can it be better? 第25屆廢水處理研討會論文集, 378-382。
Cheng, S. S., S. T. Chen, C. Y. Lin, I. C. Tseng, C. M. Lee, S. I. Lin, R. Lin, and W. T. Lin. 2000. Current status of a biohydrogenation project in Taiwan. 第25屆廢水處理研討會論文集, 383-387。
Choo, K. H. and C. H. Lee. 1996. Membrane fouling mechanism in the membrane-coupled anaerobic bioreactor. Water Res. 30: 1771-1780.
Choo, K. H. and C. H. Lee. 1996. Hydrodynamic behavior of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor. Water Res. 33: 3387-3397.
Gibson, A. M., R. C. L. Ellis-Brownlee, M. E. Cahill, E. A. Szabo, G. C. Fletcher, and P. J. Bremer. 2000. The effect of 100% CO2 on the growth of nonproteolytic Clostridium botulinum at chill temperature. Int. J. Food Microbiol. 54: 39-48.
Dabrock, B., H. Bahl, and G. Gottschalk. 1992. Parameters affecting solvent production by Clostridium pasteuriamun. Appl. Environ. Microbiol. 58: 1233-1239.
Das, D., and T. N. Veziroglu. 2001. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy. 26: 13-28.
Desvaux, M., E. Guedon, and H. Petitdemange. 2000. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66:2461-2470.
Desvaux, M., E. Guedon, and H. Petitdemange. 2001. Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment. Microbiology. 147: 1461-1471.
Fabiano, B., and P. Perego. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy. 27: 149-156.
Fang, H. H. P., T. Zhang, and H. Liu. 2002. Miccrobial diversity of a mesophilic hydrogen-producing sludge. Appl. Microbiol. Biotechnol. 58: 112-118.
Fang, H. H. P., H. Liu, and T. Zhang. 2002. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng. 78: 44-52.
Fang, H. H., and H. Liu. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82: 87-93.
Girbal, L., and P. Soucaille. 1994. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J. Bacteriol. 176: 6433-6438.
Girbal, L., I. Vasconcelos, and P. Soucille. 1994. Transmembrane pH of Clostridium acetobutylicum is inverted (more acidic inside) when the in vivo activity of hydrogenase is decreased. J. Bacteriol. 176: 6146-6147.
Gottschalk G., and S. Peinemann. 1992. The anaerobic way of life. In: Prokaryote. A. Balows, H. G. Turper, M. Dworkin, W. Harder, & K. H. Schleifer, (eds). Vol. 1. Springer-Verlag, New York. pp. 300-311
Guerrero, L., F. Pmil, R. Mendez, and J. M. Lema. 1999. Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solid and protein. Wat. Res. 33: 3281-3290.
Herbert, D., P. J. Philipps., and R. E. Strange. 1971. Carbohydrate analysis. Methods Enzymol. 5B: 265-277.
Heuer, H. M. Kresk, P. Baker, K. Smalla, and E. M. H. Wellington. 1997. Analysis of Actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241.
Husain, H. and P. Cote. 1999. The zeno experience with membrane bioreactor for municipal wastewater treatment. 2nd Symposium on Membrane Bioreactors for Wastewater Treatment. Crandfield, Bedfordshire, UK.
Isabel, V., L. Girbal, and P. Soucailie. 1994. Regulation of Carbon and Electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J. Bacteriol. 176: 1443-1450.
Junelles, A. M., R. Janati-Idrissi, H. Petitdemange, and R. Gay. 1988. Iron effect on acetone butanol fermentation. Curr. Microbiol. 17: 299-303.
Kashket, E. R., and Z. Y. Cao. 1995. Clostridial strain degeneration. FEMS Microbiol. Rev. 17: 307-315.
Kataoka, N., A. Miya., and K. Kiriyama. 1997. Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria. Proc. of the 8th International Conference on anaerobic digestion, 2, 383-390.
Kawakatsu, T., S. I. Nakao, and S. Kimura. 1993. Effects of size and compressibility of suspended particles and surface pore size of membrane on flux in crossflow filtration. J. Membrane. Sci. 81: 173-179.
Kim, J. O. and I. Somiya. 2001. Efect of hydraulic loading rate on acidogenesis in a membrane-coupled anaerobic VFAs fermenter. Environmental Technology. 22: 91-99.
Kumar, A., S. R. Jain., C. B. Sharma., A. P. Joshi., and V. C. Kalia. 1995. Increased H2 production by immobilized microorganisms. World J. Microbiol. Biotechnol. 11: 156-159.
Kusel, K., H. C. Pinkare, H. L. Drake, and R. Devereux. 1999. Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii. Appl. Environ. Microbiol. 65: 5117-5123.
Lane, D. J. 1991. 16S/23S rRNA squencing. In: Nucleic Acid Techniques in Bacterial Systematics. Stackebrandt, E., Goodfellow, M. (eds.), John Wiley and sons, New York. pp. 115-175.
Lay, J. J., Y. Y. Li, and T. Noike. 1998. The influence of pH and ammonia concentration on the methane production in high-solids digestion processes. Water Environ. Res. 70: 1075-1082.
Lay, J. J., Y. J. Lee, and T. Noike. 1999. Feasibility of biological hydrogen
production from organic fraction of municipal solid waste. Wat. Res. 11: 2579-2586.
Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting stach to hydrogen. Biotechnol Bioeng. 68: 269-278.
Lee, Y. J., T. Miyahara, and T. Noike. 1999. Effect of pH on the microbial hydrogen fermentation. In: Proceedings of the 6th IAWQ Asian-Pacific Conference. Taipei. 215-220.
Lee, Y. J., T. Miyahara, and T. Noike. 2001. Effect of iron concentration on hydrogen fermentation. Bioresour Technol. 80: 227-231.
Liu, R., X. Huang, C. Wang, L. Chen, and Y. Qian. 2000. Study on hydraulic characteristics in a submerged membrane bioreactor process. Process Biochemistry. 36: 249-254.
Liang, T. M., S. S. Cheng, and K. L. Wu. 2001. Enhanced hydrogen production by hollow fiber pervaporation membrane in the anaerobic hydrogen fermenter. 第26屆廢水處理研討會論文摘要集, 1-77。
Liang, T. M., S. S. Cheng, and K. L. Wu. 2001. Hydrogen production from chloroform inhibited granular sludge degrading organics substrate. 第26屆廢水處理研討會論文摘要集, 1-78。
Lovitt, R. W., G. J. Shen, and J. G. Zeikus. 1988. Ethanol production by
thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J. Bacteriol. 170: 2809-2815.
Lu, S. Y., C. P. Chiu, and H. Y. Huang. 2000. Pervaporation of acetic acid/water mixtures through silicalite filled polydimethylsiloxane membrane. J. Membrane Sci. 176: 159-167.
Mathews, C. K., K. E. van Holde, and K. G. Ahern. 1999. Biochemistry. Third edition. Addition Wesley Longman.
McCarty, P. L., and R. E. McKinney. 1961. Salt toxicity in anaerobic digestion. J. Water Pollut. Control Fed. 39: 399.
McCarty, P. L. 1964. Anaerobic Waste Treatment Fundamentals III. Public Works. 95: 91.
Miyake, J. 1998. Biohydrogen. Zaborsky et al. (eds), Plenum Press, New York.
Mizuno, O., R. Dinsdale, F. R. Hawkes, D. L. Hawkes, and T. Noike. 2000. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol. 73: 59-65.
Montville, T. J., N. Parris, and L. K. Conway. 1985. Influence of pH on organic acid production by Clostridium sporogenes in test tube and fermentor cultures. Appl. Environ. Microbiol. 49:733-736.
Mulder, M. 1991. Characterization of membranes in: Basic Principles of Membrane Technology. Marcel Mulder, Kluwer Academic Publishers.
Nochur, S. V., A. L. Demain, and M. F. Roberts. 1992. Carbohydrate utilization by Clostridium thermocellum: importance of internal pH in regulating growth. Enzyme Microb. Technol. 14: 338-349.
Onodera, H., T. Miyahara, and T. Nokie. 1999. Influence of ammonia concentration on hydrogen transformation of sucrose. Proc. of 7th IWQA. 1139-1144.
Owen, W. F., D. C. Stuckey, Jr., J. B. Herly, L. Y. Young, and P. L. McCarty. 1979. Bioassay for Monitoring Biochemical Methane Potential and Anaerobic Toxicity. Wat. Res. 13: 485-492.
Parameshwaran, K., and C. Visvanathan. 1998. Conference proceedings of Advanced Wastewater Treatment, Recyling and Reuse. 1, 509-516, Fiera Milano, Italy
Palazzi, E., B. Fabiano, and P. Perego. 2000. Process denelopment of continuous hydrogen production by Enterobacter aerogenes in a packed column reactor. Bioprocess Eng. 22: 205 – 213.
Peguin, S., and P. Soucaille. 1995. Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Appl. Environ. Microbiol. 61: 403-405.
Peters, J. W. 1999. Structure and mechanism of iron-only hydrogenase. Current Opinion in Structural Biology. 9: 670-676.
Ruzicka, M. 1996. The effect of hydrogen on acidogenic glucose cleavage. Wat. Res. 30: 2447-2451
Sano, T., S. Ejiri, K. Yamada, and Y. Kawakami. 1997. Separation of acetic acid-water mixtures by pervation through silicalite membrane. J. Membrane Sci. 123: 225-233.
Sans, C., J. M. Alvarez, F. Cecchi, P. Pavan 1995. Acidogenic fermentation of organic urban wastes in a plug-flow reactor under thermophilic conditions. Biore. Technol. 54: 105-110.
Schoenheit, P., A. Brandis, and R. K. Thauer. 1979. Ferredoxin degradation in growing Clostridium pasteuriamun during periods of iron deprivation. Arch. Microbiol. 120: 73-76.
Schuster, K. C., and R. van den Heuvel. 1998. Development of markers for product formation and cell cycle in batch cultivation of Clostridium acetobutylicum ATCC 824. Appl. Microbiol. Biotechnol. 49: 669 – 676.
Schwartz, R. D., and F. A. Keller. 1982. Acetic acid production by Clostridium thermoacetium in pH-controlled batch fermentations at acidic pH. Appl. Environ. Microbiol. 43: 1385-1392.
Speelmans, G., B. Poolman, T. Abee, and W. N. Konings. 1993. Amino acid transport in the thermophilic anaerobic Clostridium fervidus is driven by an electrochemical sodium gradient. J. Bacteriol. 175: 2060-2066.
Speelmans, G., B. Poolman, T. Abee, and W. N. Konings. 1993. Energy
transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc. Natl. Acad. Sci. USA . 90: 7975-7979.
Solomon, B. O., A. P. Zeng, H. Biebl, H. Schlieker, C. Posten, and W. D. Deckwer. 1995. Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol.. J. Biotechnol. 39: 107-117.
Sridhar, J., M. A. Eiteman, and J. W. Wiegel. 2000. Elucidation of enzymes in fermentation pathway used by Clostridium thermosuccinogenes growing on inulin. Appl. Environ. Microbiol. 66: 246-251.
Sterling, Jr, M. C., R. E. Lacey, C. R. Engler, and S. C. Riche. 2001. Effects of ammonia nitrogen on H2 and CH4 production during anaerobic digestion of dairy cattle manure. Bioresource Technology. 77: 9-18.
Stephenson, T., S. Judd, B. Jefferson, and K. Brindle. 2000. Membrane bioreactors for wastewater treatment. 1st ed., IWA, London.
Sylvie, S. A., L. Girbal., J. Andrade, K. Ahrens, and P. Soucaille. 2001. Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. J. Bacteriol. 183. 1748-1754.
Taguchi, F., N. Mizukami, T. Saito-Takio, and K. Hasrgawa. 1995. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No 2. Canadian Journal of Microbiology. 41: 536-540.
Talabardon, M., J. P. Schwitzguebel, and P. Peringer. 2000. Anaerobic thermophilic fermentation for acetic acid production from milk permeate. J. Biotechnol. 76: 83-92.
Tanisho, S., N. Wakao, and Y. Kosako. 1983. Biological hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy. 16: 529-530.
Tanisho, S., N. Kamiya, and N. Wakao. 1989. Hydrogen evolution of Enterobacter aerogen depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase. Biochimica. et. Biophysica. Acta. 973: 1-6.
Tanisho, S., and Y. Ishiwata. 1994. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogen. Int. J. Hydrogen Energy. 19: 807-812.
Tanisho, S., M. Kuromoto, and N. Kadokura. 1998. Effect of CO2 removal on hydrogen production by fermentation. Int. J. Hydrogen Energy. 23: 559-563.
Tardieu, E, A. Grasmick, V. Geaugey, and J. Manem. 1998. Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment. J. Membrane Sci. 147: 1-12
Tardieu, E, A. Grasmick, V. Geaugey, and J. Manem. 1999. Influence of hydrodynamics on fouling velocity in a recirculated MBR for wastewater treatment. J. Membrane Sci. 156: 131-140.
Terracciano, J. S., W. J. A. Schreurs, and E. R. Kashket. 1987. Membrance H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: evidence for electrogenic Na+/H+ antiport in Clostridium thermoaceticum. Appl. Environ. Microbiol. 53:782-786.
Vignais, P. M., B. Bernard, and M. Jacques. 2001. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25: 455-501
Ueda, T. and K. Hata. 1999. Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration. Wat. Res. 33: 2888-2892.
Ueno, Y.,T. Kawai, S. Sato, S. Otsuka, and M. Morimoto. 1995. Biological production of hydrogen from cellulose by natural anaerobic microflora. Journal of Fermentation and Bioengineering. 79: 395-397.
Ueno, Y., S. Otauka, and M. Morimoto. 1996. Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. Journal of Fermentation and Bioengineering. 82: 194-197.
Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 57: 555-562
Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 57: 555-562.
Vasconcelos, I., L. Girbal, and P. Soucaille. 1994. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J. Bacteriol. 176: 1443-1450.
Wang, G., and D. I. C. Wang. 1984. Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl. Environ. Microbiol. 47:294-298.
Wen, C., X. Huang, and Y. Qian. 1999. Domestic wastewater treatment using an aerobic bioreactor coupled with membrane filtration. Process Biochemistry, 35: 335-340.
Weber S., S. Stubner, and R. Conrad. 2001. Bacterial Populations Colonizing and Degrading Rice Straw in Anoxic Paddy Soil. Appl. Environ. Microbiol. 67: 1318-1327.
Wiegel, J. 1992. Thermophilic bacteria. J. K. Kristjansson, (eds.). p.p. 110 – 113.
Wisniewski, C., A. L. Cruz., and A. Grasmick. 1999. Kinetics of organic carbon removal by a mixed culture in a membrane bioreactor. Biochemical Engineering Journal. 3: 61-69.
Witjitra, K., M. M. Shah, and M. Cheryan. 1996. Effect of nutrient sources on growth and acetate production by Clostridium thermoaceticum. Enzyme Microb. Technol. 19: 322-327.
Yang, H., and H.L. Drake. 1990. Differential effects of sodium on hydrogen- and
glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl. Environ. Microbiol. 56:81-86.
Yanagi, C., M, Sato, and Y. Takahara. 1994 Treatment of wheat starch waste water by a membrane conbined two phase methane fermentation system. Desalination. 98: 161-170.
Yokoi, H., T. Ohkawa, J. Hirosse, S. Hayashi, and Y. Takasaki. 1995. Characteristics of hydrogen production by acid uric Enterobacter aerogen strain HO-39. Journal of Fermentation and Bioengineering. 80: 571-574
Yu, H. Q., and H. H. P. Fang. 2000. Thermophilic acidification of dairy wastewater. Appl. Microbiol. Biotechnol. 54: 439-444.
Zinder, S. H. 1993. Physiological Ecology of Methanogens. J. G. Ferry, (eds). CHAPMAN & HALL. New York. London. pp. 152.