簡易檢索 / 詳目顯示

研究生: 林冠蓉
Lin, Kuan-Jung
論文名稱: 流行性感冒病毒 A 型NS1 蛋白拮抗宿主抗病毒免疫反應之分子機轉
Molecular mechanisms of how influenza A viral NS1 protein antagonizes the host antiviral immune responses
指導教授: 凌斌
Pin, Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 44
中文關鍵詞: 流感病毒NS1蛋白先天性免疫TRAF3蛋白
外文關鍵詞: influenza, non-structural protein 1 (NS1), innate immunity, TRAF3.
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流感病毒和宿主先天免疫系統的交互作用是複雜的。在細胞被RNA流感病毒感染時,RIG-I是一個位於細胞質且可以偵測5端帶有triphosphate官能基的病毒RNA的重要蛋白質,進而引起第一型干擾素等抗病毒的先天免疫反應。在這其中,流感病毒發展了各式各樣的策略,以利於逃脫宿主抗病毒機制。其中最著名的策略之一是流感病毒的NS1蛋白會與RIG-I競爭病毒RNA的結合並阻斷活化下游產生第一型干擾素的訊息傳遞路線。 然而,新興的證據以及我們實驗室初步的發現都顯示著流感病毒的NS1蛋白可以並非藉由競爭病毒RNA的方式去阻斷RIG 所主導產生第一型干擾素的訊息傳遞路線。TRAF3是位於RIG-I所媒介產生第一型干擾素的訊息傳導路徑中一個重要的E3泛素連接酶。我們實驗室發現NS1蛋白利用它的effector區域 (ED)去結合RIG-I 下游的訊息傳導分子TRAF3以抑制第一型干擾素的產生。在本篇論文中,我們著重於研究NS1如何抑制TRAF3活化的分子機制。經由共軛焦螢光顯微鏡的分析結果顯示在HEK293 細胞中NS1蛋白會與內生性的TRAF3有colocalization 的現象。這顯示著NS1有可能會以TRAF3為標的蛋白。緊接著,我們進一步剖析NS1和TRAF3 交互作用中所需的蛋白質區域。經由共同免疫沉澱法分析結果顯示位於NS1的ED 的羧基端區域 (NS1-ED-C, a.a.125-230)和位於TRAF3羧基端的TRAF區域(a.a. 340-568) 是主要參於此交互作用的區段。在RIG-I活化後TRAF3會被行K63位泛素化的轉譯後修飾,已變成活化態的TRAF3。在外給具有活化下游能力的RIG-I 片段後,經由偵測TRAF3的K63位泛素化結果說明了NS1的ED-C 對於抑制TRAF3的K63位泛素化是重要的。並且NS1的ED-C在抑制經由表現RIG-I 片段或是IPS-1蛋白所持續活化干擾素β的啟動子活性也扮演重要角色。進一步經由共同免疫沉澱法分析結果顯示著NS1-ED 可能會和IPS-1去競爭TRAF3的結合。在病毒感染時,病毒的NS1會與內生性的TRAF3有colocalization 的現象。RIG-I片段蛋白所持續活化TRAF3的K63位泛素化在病毒感染時是被抑制的。總結而言,我們的研究在流感病毒NS1藉由抑制TRAF3活化而抑制了RIG-I所媒介的第一型干擾素的產生中,揭開了新的一面。而第一型干擾素在抗流感病毒的先天免疫中扮演不可或缺的角色。

    The interaction between the host innate immune system and influenza A virus (IAV) infection is complicated. During IAV infection, a key cytosolic sensor RIG-I detects 5’ triphosphate viral RNA to trigger type I IFN-mediated antiviral responses. Meanwhile, IAV develops the multiple strategies to evade the host antiviral responses. One of the prominent examples is that IAV non-structural protein 1 (NS1) competes with RIG-I for IAV viral dsRNA binding, thereby blocking RIG-I sensing and activation of the downstream pathway to type I IFN production. However, emerging evidence and our preliminary findings suggest that IAV NS1 protein blocks RIG-I-mediated IFN-β activation through an RNA binding-independent manner. Particularly, our data showed that NS1 employed its effector domain (ED) to target a RIG-I downstream mediator TRAF3, which is an E3 ubiquitin ligase essential for IFN-β activation. In this study, we focus on the molecular mechanisms of how IAV NS1inhibits TRAF3 activation. Results from the confocal microscopy analysis showed the colocalization of IAV NS1 and endogenous TRAF3 in HEK293 cells. It suggests that TRAF3 is a potential target of IAV NS1. Subsequently, we dissected the interaction domains between NS1 and TRAF3. The co-immunoprecipitation analyses showed that the C-terminal region of effector domain (NS1-ED-C, a.a.125-230) of NS1 and the C-terminal TRAF domain (a.a. 340-568) of TRAF3 were the main regions involved in this interaction. The in vivo ubiquitination assays indicated that ED-C of NS1 was important for inhibiting the K63-linked poly-ubiquitination of TRAF3 upon RIG-I stimulation. Reporter assays indicated that ED-C of NS1 played an important role in blocking the IFN-β activation upon RIG-I or IPS-1 stimulation. Furthermore, results from the co-immunoprecipitation analyses suggest During IAV infection, NS1 was also shown to be colocalized with TRAF3. Furthermore, the K63-linked poly-ubiquitination of TRAF3 stimulated by an active mutant RIG-I-CARD was inhibited during IAV infection. Collectively, our study provides a novel insight into how IAV NS1 ED functions to block TRAF3 ubiquitination to intercept RIG-I signaling to type I IFN production, which is essential for mounting antiviral immune responses.

    1.Introduction............................................ 1 1.1 Epidemiology and pathology of influenza virus .......................................................... 1 1.2 Virology of influenza A virus (IAV) .......................................................... 2 1.2.1 RNA-dependent RNA polymerases (RdRp)complexes ...........................................................2 1.2.2 hemagglutinin (HA) and neuraminidase (NA) ...........................................................3 1.2.3 Matrix protein 1 (M1)and Membrane protein 2 (M2).....3 1.2.4 Nonstructural protein 1(NS1) and Nonstructural protein 2(NS2).................................................... 4 1.3 Cellular innate immune against IAV .......................................................... 4 1.4 IAV factors interaction with innate immunity .......................................................... 6 1.5 IAV NS1 interaction with innate immunity .......................................................... 7 2.Materials and Methods .......................................................... 9 2.1 Cell, Viruses, and Reagents .......................................................... 9 2.2 Plasmid .......................................................... 9 2.3 transfection ..........................................................10 2.4 Luciferase assay ..........................................................10 2.5 Coimmunoprecipitation and Western Blot Analysis ..........................................................11 2.6 In vivo ubiquitination assays ..........................................................12 2.7 Plaque assay ..........................................................12 2.8 Confocal microscopy ..........................................................13 3 results ..........................................................14 3.1 The subcellular location of TRAF3 and IAV NS1 ..........................................................14 3.2 Mapping interaction domains between TRAF3 and IAV NS1 ..........................................................15 3.3 The effect of IAV NS1 and its mutants on the activation of TRAF3..................................................16 3.4 The effect of IAV NS1 and its mutants on the association between IPS-1 ............................................17 3.5 IAV NS1 and its mutant affect the IFN-β induction in an RNA-binding independent manner ..........................................................17 3.6 NS1 targets TRAF3 to inhibit RIG-I-mediated IFN-β induction during IAV infection ..........................................................18 4. Discussion ..........................................................19 5. References ............................................24 6. Figures and figure legends.............................30 7. Appendix...............................................40 Appendix 1................................................40 Appendix 2 ...............................................40 Appendix 3 ...............................................41 Appendix 4 ...............................................42 Appendix 5 ...............................................43

    1 Thompson, W. W. et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289, 179-186, doi:joc21709 [pii] (2003).
    2 Thompson, W. W. et al. Influenza-associated hospitalizations in the United States. JAMA 292, 1333-1340, doi:10.1001/jama.292.11.1333 (2004).
    3 Neumann, G., Noda, T. & Kawaoka, Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459, 931-939, doi:10.1038/nature08157 (2009).
    4 Monsalvo, A. C. et al. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat Med 17, 195-199, doi:nm.2262 [pii] 10.1038/nm.2262 (2011).
    5 Kobasa, D. et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445, 319-323, doi:10.1038/nature05495 (2007).
    6 Imai, Y. et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235-249, doi:10.1016/j.cell.2008.02.043 (2008).
    7 Shirey, K. A. et al. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 497, 498-502, doi:10.1038/nature12118 (2013).
    8 Unkel, B. et al. Alveolar epithelial cells orchestrate DC function in murine viral pneumonia. J Clin Invest 122, 3652-3664, doi:10.1172/JCI62139 (2012).
    9 Rahim, M. N. et al. Generation and characterization of a new panel of broadly reactive anti-NS1 mAbs for detection of influenza A virus. J Gen Virol 94, 593-605, doi:10.1099/vir.0.046649-0 (2013).
    10 Tong, S. et al. New world bats harbor diverse influenza A viruses. PLoS Pathog 9, e1003657, doi:10.1371/journal.ppat.1003657 (2013).
    11 Binh, N. T., Wakai, C., Kawaguchi, A. & Nagata, K. Involvement of the N-terminal portion of influenza virus RNA polymerase subunit PB1 in nucleotide recognition. Biochem Biophys Res Commun 443, 975-979, doi:10.1016/ j.bbrc. 2013.12.071 (2014).
    12 Sriwilaijaroen, N. & Suzuki, Y. Molecular basis of the structure and function of H1 hemagglutinin of influenza virus. Proceedings of the Japan Academy. Series B, Physical and biological sciences 88, 226-249 (2012).
    13 Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A. & Klenk, H. D. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78, 12665-12667, doi:10.1128/ JVI.78.22.12665-12667. 2004 (2004).
    14 Jackson, R. J. et al. Oseltamivir, zanamivir and amantadine in the prevention of influenza: a systematic review. J Infect 62, 14-25, doi:10.1016/j.jinf.2010.10.003 (2011).
    15 Cros, J. F. & Palese, P. Trafficking of viral genomic RNA into and out of the nucleus: influenza, Thogoto and Borna disease viruses. Virus Res 95, 3-12 (2003).
    16 Rossman, J. S., Jing, X., Leser, G. P. & Lamb, R. A. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 142, 902-913, doi:10.1016/j.cell.2010.08.029 (2010).
    17 Wise, H. M. et al. Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS Pathog 8, e1002998, doi:10.1371/journal.ppat.1002998 (2012).
    18 de Chassey, B. et al. The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication. PLoS Pathog 9, e1003440, doi: 10.1371/journal.ppat. 1003440 (2013).
    19 Forbes, N. et al. Identification of adaptive mutations in the influenza A virus non-structural 1 gene that increase cytoplasmic localization and differentially regulate host gene expression. PLoS One 8, e84673, doi:10.1371/journal.pone. 0084673 (2013).
    20 Tripathi, S., White, M. R. & Hartshorn, K. L. The amazing innate immune response to influenza A virus infection. Innate Immun, doi:10.1177/ 1753425913508992 (2013).
    21 Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314, 997-1001, doi:10.1126/science.1132998 (2006).
    22 Rehwinkel, J. et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140, 397-408, doi:10.1016/j.cell.2010.01.020 (2010).
    23 Takeuchi, O. & Akira, S. MDA5/RIG-I and virus recognition. Curr Opin Immunol 20, 17-22, doi:10.1016/j.coi.2008.01.002 (2008).
    24 Oshiumi, H., Matsumoto, M., Hatakeyama, S. & Seya, T. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284, 807-817, doi:10.1074/jbc. M804259200 (2009).
    25 Oshiumi, H. et al. The Ubiquitin Ligase Riplet Is Essential for RIG-I-Dependent Innate Immune Responses to RNA Virus Infection. Cell Host & Microbe 8, 496-509, doi:DOI 10.1016/j.chom.2010.11.008 (2010).
    26 Oshiumi, H., Miyashita, M., Matsumoto, M. & Seya, T. A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS Pathog 9, e1003533, doi:10.1371/journal.ppat.1003533 (2013).
    27 Gack, M. U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916-920, doi:nature05732 [pii] 10.1038/nature05732 (2007).
    28 Jiang, X. et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36, 959-973, doi:10.1016/j.immuni.2012.03.022 (2012).
    29 Patel, J. R. et al. ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon. EMBO Rep 14, 780-787, doi:10.1038/ embor. 2013.102 (2013).
    30 Hou, F. et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448-461, doi:S0092-8674(11)00716-1 [pii] 10.1016/j.cell.2011.06.041 (2011).
    31 Saha, S. K. et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 25, 3257-3263, doi:10.1038/sj.emboj.7601220 (2006).
    32 Paz, S. et al. A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response. Cell Res 21, 895-910, doi:10.1038/cr.2011.2 (2011).
    33 Yoshida, R. et al. TRAF6 and MEKK1 play a pivotal role in the RIG-I-like helicase antiviral pathway. J Biol Chem 283, 36211-36220, doi:10.1074/ jbc. M806576200 (2008).
    34 Huang, Y. et al. UXT-V1 facilitates the formation of MAVS antiviral signalosome on mitochondria. J Immunol 188, 358-366, doi:10.4049/jimmunol.1102079 (2012).
    35 Nakhaei, P. et al. The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation. PLoS Pathog 5, e1000650, doi:10.1371/journal.ppat.1000650 (2009).
    36 Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628-1632, doi:10.1126/science.1145918 (2007).
    37 Konno, H. et al. TRAF6 establishes innate immune responses by activating NF-kappaB and IRF7 upon sensing cytosolic viral RNA and DNA. PLoS One 4, e5674, doi:10.1371/journal.pone.0005674 (2009).
    38 Bowie, A. G. & Unterholzner, L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 8, 911-922, doi:10.1038/nri2436 (2008).
    39 Tam, V. C. et al. Lipidomic profiling of influenza infection identifies mediators that induce and resolve inflammation. Cell 154, 213-227, doi:10.1016/ j.cell.2013. 05.052 (2013).
    40 Morita, M. et al. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell 153, 112-125, doi:10.1016/ j.cell.2013.02.027 (2013).
    41 Shapira, S. D. et al. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139, 1255-1267, doi:10.1016/ j.cell. 2009.12.018 (2009).
    42 Brass, A. L. et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139, 1243-1254, doi:10.1016/j.cell.2009.12.017 (2009).
    43 Konig, R. et al. Human host factors required for influenza virus replication. Nature 463, 813-817, doi:10.1038/nature08699 (2010).
    44 Chen, W. et al. A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7, 1306-1312, doi:10.1038/nm1201-1306 (2001).
    45 Le Goffic, R. et al. Influenza A virus protein PB1-F2 exacerbates IFN-beta expression of human respiratory epithelial cells. J Immunol 185, 4812-4823, doi:10.4049/jimmunol.0903952 (2010).
    46 McAuley, J. L. et al. Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease. PLoS Pathog 9, e1003392, doi:10.1371/journal.ppat.1003392 (2013).
    47 Wise, H. M. et al. A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol 83, 8021-8031, doi:10.1128/JVI.00826-09 (2009).
    48 Vasin, A. V. et al. Molecular mechanisms enhancing the proteome of influenza A viruses: An overview of recently discovered proteins. Virus Res 185C, 53-63, doi:10.1016/j.virusres.2014.03.015 (2014).
    49 Jagger, B. W. et al. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337, 199-204, doi:10.1126/science.1222213 (2012).
    50 Weber, F. & Haller, O. Viral suppression of the interferon system. Biochimie 89, 836-842, doi:10.1016/j.biochi.2007.01.005 (2007).
    51 Gannage, M. et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe 6, 367-380, doi:10.1016/j.chom.2009.09.005 (2009).
    52 Donelan, N. R., Basler, C. F. & Garcia-Sastre, A. A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice. J Virol 77, 13257-13266 (2003).
    53 Mibayashi, M. et al. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol 81, 514-524, doi:JVI.01265-06 [pii] 10.1128/JVI.01265-06 (2007).
    54 Gack, M. U. et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5, 439-449, doi:10.1016/j.chom.2009.04.006 (2009).
    55 Nemeroff, M. E., Barabino, S. M., Li, Y., Keller, W. & Krug, R. M. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3'end formation of cellular pre-mRNAs. Mol Cell 1, 991-1000, doi:S1097-2765(00)80099-4 [pii] (1998).
    56 Silverman, R. H. Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 81, 12720-12729, doi:10.1128/JVI.01471-07 (2007).
    57 Garcia, M. A. et al. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiology and molecular biology reviews : MMBR 70, 1032-1060, doi:10.1128/MMBR.00027-06 (2006).
    58 Zhu, Z. X. et al. Nonstructural Protein 1 of Influenza A Virus Interacts with Human Guanylate-Binding Protein 1 to Antagonize Antiviral Activity. PLoS One 8, doi:ARTN e55920 DOI 10.1371/journal.pone.0055920 (2013).
    59 Chun-YangLin. The interactions between the host innate immune system and influenza A virus. master thesis, National Cheng Kung University, Taiwan (2012).
    60 Hale, B. G., Randall, R. E., Ortin, J. & Jackson, D. The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89, 2359-2376, doi:89/10/2359 [pii]
    10.1099/vir.0.2008/004606-0 (2008).
    61 Li, Y., Yamakita, Y. & Krug, R. M. Regulation of a nuclear export signal by an adjacent inhibitory sequence: the effector domain of the influenza virus NS1 protein. Proc Natl Acad Sci U S A 95, 4864-4869 (1998).
    62 Xie, P. TRAF molecules in cell signaling and in human diseases. Journal of molecular signaling 8, 7, doi:10.1186/1750-2187-8-7 (2013).
    63 Force, W. R., Cheung, T. C. & Ware, C. F. Dominant negative mutants of TRAF3 reveal an important role for the coiled coil domains in cell death signaling by the lymphotoxin-beta receptor. J Biol Chem 272, 30835-30840 (1997).
    64 Opitz, B. et al. IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol 9, 930-938, doi:10.1111/j.1462-5822.2006.00841.x (2007).
    65 Swedan, S., Musiyenko, A. & Barik, S. Respiratory syncytial virus nonstructural proteins decrease levels of multiple members of the cellular interferon pathways. J Virol 83, 9682-9693, doi:10.1128/JVI.00715-09 (2009).
    66 Alff, P. J., Sen, N., Gorbunova, E., Gavrilovskaya, I. N. & Mackow, E. R. The NY-1 hantavirus Gn cytoplasmic tail coprecipitates TRAF3 and inhibits cellular interferon responses by disrupting TBK1-TRAF3 complex formation. J Virol 82, 9115-9122, doi:10.1128/JVI.00290-08 (2008).
    67 Egorov, A. et al. Transfectant influenza A viruses with long deletions in the NS1 protein grow efficiently in Vero cells. J Virol 72, 6437-6441 (1998).
    68 Kuo, R. L., Zhao, C., Malur, M. & Krug, R. M. Influenza A virus strains that circulate in humans differ in the ability of their NS1 proteins to block the activation of IRF3 and interferon-beta transcription. Virology 408, 146-158, doi:S0042-6822(10)00600-8 [pii] 10.1016/j.virol.2010.09.012 (2010).
    69 Santos, A. et al. SUMOylation affects the interferon blocking activity of the influenza A non-structural protein NS1 without affecting its stability or cellular localization. J Virol, doi:JVI.02063-12 [pii] 10.1128/JVI.02063-12 (2013).
    70 Engel, D. A. The influenza virus NS1 protein as a therapeutic target. Antiviral Res, doi:S0166-3542(13)00162-9 [pii] 10.1016/j.antiviral.2013.06.005 (2013).
    71 Walkiewicz, M. P., Basu, D., Jablonski, J. J., Geysen, H. M. & Engel, D. A. Novel inhibitor of influenza non-structural protein 1 blocks multi-cycle replication in an RNase L-dependent manner. J Gen Virol 92, 60-70, doi:10.1099/vir.0.025015-0 (2011).

    無法下載圖示 校內:2024-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE