| 研究生: |
劉洸瑋 Liu, Kuang-Wei |
|---|---|
| 論文名稱: |
第一原理計算及機器學習對硼與砷共參雜對矽光致發光影響 Investigating the Impact of Boron–Arsenic Co-Doping on the Photoluminescence of Silicon: A Combined First-Principles and Machine Learning Approach |
| 指導教授: |
高國興
Kao, Kuo-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 第一原理模擬 、三五族元素共參雜 、光致發光 、機器學習 |
| 外文關鍵詞: | First principles simulation, Elements from three or five groups co-doping, Photoluminescence, Machine learning |
| 相關次數: | 點閱:102 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著時代與技術的發展,自1950年代第一個積體電路誕生以來,以及摩爾定律的提出,晶片技術隨著製程能力的提升,每年都以倍數成長,推動了科技業的快速發展。目前,大多數電子元件使用矽作為主要材料。矽作為間接能隙半導體,其發光效率較低,因此提升其光致發光能力成為一項重要挑戰。本研究旨在探討矽材料的光學特性,特別是透過摻雜III-V族元素(硼與砷)對其光致發光特性的影響。
本研究使用第一原理模擬軟體VASP(Vienna Ab initio Simulation Package)進行模擬,並配搭使用CHGNet機器學習預測矽在不同摻雜條件下的光學特性,並探討隨著摻雜元素之間距離變化對光致發光強度的影響。此外,我們使用Python套件PyPhotonic進行光學特性的分析與模擬,進一步探討摻雜對元件性能的影響。研究的目的是通過理解摻雜對矽發光特性的作用,為未來矽基光電元件的發展提供理論支持。
With the advancement of technology over time, since the birth of the first integrated circuit in the 1950s and the introduction of Moore's Law, chip technology has exponentially grown with improvements in manufacturing processes, driving the rapid development of the tech industry. Currently, most electronic devices use silicon as the primary material. However, as silicon is an indirect bandgap semiconductor, its luminescence efficiency is relatively low, making it a significant challenge to enhance its photoluminescence. This study aims to investigate the optical properties of silicon, specifically through the co-doping of III-V group elements (boron and arsenic) and their effects on its photoluminescence.
In this research, we used the first-principles simulation software VASP (Vienna Ab initio Simulation Package) and CHGNet which is a graph neural network-based machine-learning interatomic potential (MLIP) to predict the optical properties of silicon under different doping conditions and to explore the effects of varying distances between dopant atoms on photoluminescence intensity. Additionally, we utilized the Python package PyPhotonic to further analyze and simulate the optical characteristics, examining how doping impacts device performance. The goal of this study is to understand how doping affects the luminescence properties of silicon, providing theoretical support for the development of future silicon-based optoelectronic devices.
[1]S. Ossicini, L. Pavesi, and F. Priolo, Light Emitting Silicon for Microphotonics. Springer Berlin Heidelberg, 2003.
[2]K. H. Kao et al., "Linking Room- and Low-Temperature Electrical Performance of MOS Gate Stacks for Cryogenic Applications," IEEE Electron Device Letters, vol. 43, no. 5, pp. 674-677, 2022, doi: 10.1109/led.2022.3162368.
[3]K. H. Kao et al., "Subthreshold Swing Saturation of Nanoscale MOSFETs Due to Source-to-Drain Tunneling at Cryogenic Temperatures," IEEE Electron Device Letters, vol. 41, no. 9, pp. 1296-1299, 2020, doi: 10.1109/LED.2020.3012033.
[4]S. M. Sze, Y. Li, and K. K. Ng, Physics of Semiconductor Devices. Wiley, 2021.
[5]E. M. Conwell, "Impurity Band Conduction in Germanium and Silicon," Physical Review, vol. 103, no. 1, pp. 51-61, 1956, doi: 10.1103/PhysRev.103.51.
[6]S. A. Tawfik and S. P. Russo, "PyPhotonics: A python package for the evaluation of luminescence properties of defects," Computer Physics Communications, vol. 273, p. 108222, 2022/04/01/ 2022, doi: https://doi.org/10.1016/j.cpc.2021.108222.
[7]G. Zhang, Y. Cheng, J.-P. Chou, and A. Gali, "Material platforms for defect qubits and single-photon emitters," Applied Physics Reviews, vol. 7, no. 3, 2020, doi: 10.1063/5.0006075.
[8]"<Alkauskas_2014_New_J._Phys._16_073026.pdf>."
[9]Y. Baron et al., "Detection of Single W-Centers in Silicon," ACS Photonics, vol. 9, no. 7, pp. 2337-2345, 2022/07/20 2022, doi: 10.1021/acsphotonics.2c00336.
[10]"https://www.semi.org/zh/silicon-photonics-revolution-ai-high-performance-computing." (accessed 2024).
[11]"<PhysRevB.54.11169.pdf>."
[12]P. E. Blochl, "Projector augmented-wave method," Phys Rev B Condens Matter, vol. 50, no. 24, pp. 17953-17979, Dec 15 1994, doi: 10.1103/physrevb.50.17953.
[13]"https://pic2.zhimg.com/v2-c9ef660b3334657656fd57a5066d832b_1440w.jpg?source=172ae18b."
[14]A. Togo, L. Chaput, T. Tadano, and I. Tanaka, "Implementation strategies in phonopy and phono3py," Journal of Physics: Condensed Matter, vol. 35, no. 35, 2023, doi: 10.1088/1361-648X/acd831.
[15]B. Deng et al., "CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling," Nature Machine Intelligence, vol. 5, no. 9, pp. 1031-1041, 2023, doi: 10.1038/s42256-023-00716-3.
[16]"https://chgnet.lbl.gov/."
[17]W. T. Geng, Y. C. Liu, N. Xu, G. Tang, Y. Kawazoe, and V. Wang, "Empowering materials science with VASPKIT: a toolkit for enhanced simulation and analysis," (in eng), Nat Protoc, Apr 23 2025, doi: 10.1038/s41596-025-01160-w.
[18]J. M. Luis, D. M. Bishop, and B. Kirtman, "A different approach for calculating Franck-Condon factors including anharmonicity," J Chem Phys, vol. 120, no. 2, pp. 813-22, Jan 8 2004, doi: 10.1063/1.1630566.
[19]Y. Wang, S.-L. Shang, H. Fang, Z.-K. Liu, and L.-Q. Chen, "First-principles calculations of lattice dynamics and thermal properties of polar solids," npj Computational Materials, vol. 2, no. 1, 2016, doi: 10.1038/npjcompumats.2016.6.
[20]A. Floris, I. Timrov, B. Himmetoglu, N. Marzari, S. de Gironcoli, and M. Cococcioni, "Hubbard-corrected density functional perturbation theory with ultrasoft pseudopotentials," Physical Review B, vol. 101, no. 6, 2020, doi: 10.1103/PhysRevB.101.064305.