| 研究生: |
陳俊傑 Chen, Chun-Chieh |
|---|---|
| 論文名稱: |
基於嵌入技術分析新聞事件檢測之研究 Research on analysis of news event detection based on embedding technology |
| 指導教授: |
王惠嘉
Wang, Hei-Chia |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 事件檢測 、新聞事件 、BERT 句子嵌入 、COVID-19 |
| 外文關鍵詞: | Event detection, News event, BERT sentence embedding, COVID-19 |
| 相關次數: | 點閱:89 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新聞媒體對於民眾參與政府公共政策具有相當的影響力。隨著移動設備和移動互聯網的普及,新聞標題已成為吸引讀者注意力的主要方式之一,越來越多社群媒體網站與媒體提供商(例如 CNN、BBC等)每日發布海量的新聞標題。這些新聞標題可能涵蓋不同的主題,包含噪音或重疊的內容。這使讀者越來越難以快速獲得感興趣的新聞資訊,也使政府難快速掌握民眾關切的新聞事件。為減少新聞噪音或單詞之間的相關性對對於事件檢測的影響,本研究提出一種基於詞嵌入技術的金字塔關係算法(Pyramid relation algorithm, PRA),加強單詞之間的關係找到事件的特徵,減少新聞噪聲的影響,提升新聞事件檢測準確性。此外,本研究採用2019年COVID-19大流行期間的新聞數據集來檢測新聞子事件,例如:醫療用品短缺、經濟措施與防疫措施等。然而,子事件檢測比事件檢測困難,因為每個子事件與主要事件共存著相同或相似的文字特徵。因此,本研究提出一種基於集成分群技術的方法,結合BERT句子嵌入模型和兩階段濾濾機制,改善一般事件檢測方法無法有效地檢測子事件的問題。
本文使用真實世界的新聞數據集,與本研究提出的PRA事件檢測及子事件檢測分別進行實驗。實驗結果表明,PRA觸發詞提取方法有助於提升獲得良好的事件性能。與其他事件檢測方法相比,基於PRA的新聞事件檢測方法的衡量指標性能提高達22%。此外,本研究所提的子事件檢測方法,與其他模型比較表明,效能提升可達81%。實驗結果顯示本研究提出的兩項事件檢測方法優於其他方法,且有效快速地找出新聞事件。這研究不但可減少政府機關花費大量時間彙集新聞事件,也朝向新聞事件分析細緻化的方向發展,邁向智能新聞系統的關鍵一步。
The news media has significant influence on people's participation in the government's public policy. With the popularity of mobile devices and mobile Internet, news headlines have become one of the main ways to attract readers' attention. More and more social media sites and news media providers (such as CNN, BBC, etc.) publish a large number of news headlines every day. These headlines may cover different topics, contain noise or overlap. It was becoming more and more difficult for readers to quickly obtain interesting news information, and it was difficult for the government to quickly grasp news events of public concern. In order to reduce the impact of news noise or correlation between words on event detection, this study proposes a Pyramid Relational Algorithm (PRA) based on word embedding technology to strengthen the relationship between words to find the features of events. In addition, this study used the news dataset during the 2019 COVID-19 pandemic to detect news sub-events, such as: shortage of medical supplies, economic measures and epidemic prevention measures, etc. However, sub-event detection was more difficult than event detection because each sub-event coexisted with the main event with the same or similar text features. Therefore, this study proposed a method based on ensemble clustering technology, which combined sentence embedding model and two-stage filtering mechanism to improve the problem that general event detection methods cannot effectively detect sub-events.
This paper used real-world news datasets to conduct experiments with the PRA event detection and sub-event detection proposed in this study, respectively. The experimental results showed that the PRA trigger word extraction method help to improve the performance of events. Compared with other event detection methods, the metric performance of the PRA-based news event detection method was improved by up to 22%. In addition, the sub-event detection method proposed in this study, compared with other models, shows that the performance can be improved by up to 81%. The two event detection methods proposed in this study outperform other methods and were effective and fast in finding news events. This research can not only reduce the time spent by government agencies in gathering news events, but also develops in the direction of detailed analysis of news events.
Abuaiadah, D. (2016). Using Bisect K-Means Clustering Technique in the Analysis of Arabic Documents. ACM Trans. Asian Low-Resour. Lang. Inf. Process., 15(3), Article 17.
Aggarwal, A., Chauhan, A., Kumar, D., Mittal, M., & Verma, S. (2020). Classification of fake news by fine-tuning deep bidirectional transformers based language model. EAI Endorsed Transactions on Scalable Information Systems, 7(27).
Ahmad, I., Yousaf, M., Yousaf, S., & Ahmad, M. O. (2020). Fake News Detection Using Machine Learning Ensemble Methods. Complexity, 2020, 8885861.
Alhawarat, M., & Hegazi, M. (2018). Revisiting K-Means and Topic Modeling, a Comparison Study to Cluster Arabic Documents. Ieee Access, 6, 42740-42749. doi:10.1109/ACCESS.2018.2852648
Allan, J., Papka, R., & Lavrenko, V. (1998). On-line new event detection and tracking. Paper presented at the Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, Melbourne, Australia. https://doi.org/10.1145/290941.290954
Amine, A., Elberrichi, Z., & Simonet, M. (2010). Evaluation of text clustering methods using wordnet. The International Arab Journal of Information Technology, 7(4).
Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. Paper presented at the Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms.
Basilio Marcio, P., Pereira, V., & Brum, G. (2019). Identification of operational demand in law enforcement agencies: An application based on a probabilistic model of topics. Data Technologies and Applications, 53(3), 333-372.
Belyaeva, E., Košmerlj, A., Mladenić, D., & Leban, G. (2018). Automatic Estimation of News Values Reflecting Importance and Closeness of News Events. Informatica, 42(4).
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
Bode, L. (2016). Political News in the News Feed: Learning Politics from Social Media. Mass Communication and Society, 19(1), 24-48. doi:10.1080/15205436.2015.1045149
Bouras, C., & Tsogkas, V. (2012). A clustering technique for news articles using WordNet. Knowledge-Based Systems, 36, 115-128. doi:https://doi.org/10.1016/j.knosys.2012.06.015
Burscher, B., Vliegenthart, R., & de Vreese, C. H. (2016). Frames Beyond Words: Applying Cluster and Sentiment Analysis to News Coverage of the Nuclear Power Issue. Social Science Computer Review, 34(5), 530-545. doi:10.1177/0894439315596385
Carta, S., Consoli, S., Piras, L., Podda, A. S., & Reforgiato Recupero, D. (2021). Event detection in finance using hierarchical clustering algorithms on news and tweets. PeerJ. Computer science, 7, e438-e438.
Cawley, A. (2012). SHARING THE PAIN OR SHOULDERING THE BURDEN? Journalism Studies, 13(4), 600-615. doi:10.1080/1461670X.2011.629108
Ceron, A., & Memoli, V. (2015). Trust in Government and Media Slant:A Cross-Sectional Analysis of Media Effects in Twenty-Seven European Countries. The International Journal of Press/Politics, 20(3), 339-359. doi:10.1177/1940161215572634
Chang, H.-T., Liu, S.-W., & Mishra, N. (2015). A tracking and summarization system for online Chinese news topics. Aslib Journal of Information Management, 67(6), 687-699. doi:10.1108/AJIM-10-2014-0147
Chen, C., & Ren, J. (2017). Forum latent Dirichlet allocation for user interest discovery. Knowledge-Based Systems, 126, 1-7. doi:https://doi.org/10.1016/j.knosys.2017.04.006
Chen, C. C., & Wang, H.-C. (2021). Adapting the influences of publishers to perform news event detection. Journal of Information Science, 0(0), 01655515211047422. doi:10.1177/01655515211047422
Chen, L., Zhang, H., Jose, J. M., Yu, H., Moshfeghi, Y., & Triantafillou, P. (2018). Topic detection and tracking on heterogeneous information. Journal of Intelligent Information Systems, 51(1), 115-137. doi:10.1007/s10844-017-0487-y
Coleman, A. (2022). Ukraine conflict: Further false images shared online. Retrieved from https://www.bbc.com/news/60528276
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American society for information science, 41(6), 391-407.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In.
Fan, Z., Chen, S., Zha, L., & Yang, J. (2016). A Text Clustering Approach of Chinese News Based on Neural Network Language Model. International Journal of Parallel Programming, 44(1), 198-206. doi:10.1007/s10766-014-0329-2
Fred, A. (2001, 2001//). Finding Consistent Clusters in Data Partitions. Paper presented at the Multiple Classifier Systems, Berlin, Heidelberg.
Geng, X., Zhang, Y., Jiao, Y., & Mei, Y. (2019). A Novel Hybrid Clustering Algorithm for Topic Detection on Chinese Microblogging. IEEE Transactions on Computational Social Systems, 6(2), 289-300. doi:10.1109/TCSS.2019.2897641
Ghadimi, A., & Beigy, H. (2022). Hybrid multi-document summarization using pre-trained language models. Expert Systems with Applications, 192, 116292. doi:https://doi.org/10.1016/j.eswa.2021.116292
Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B., & Lazer, D. (2019). Fake news on Twitter during the 2016 US presidential election. Science, 363(6425), 374-378.
Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A., Phillips, T., . . . Tatlow, H. (2021). A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker). Nature Human Behaviour, 5(4), 529-538. doi:10.1038/s41562-021-01079-8
Han, S., Hao, X., & Huang, H. (2018). An event-extraction approach for business analysis from online Chinese news. Electronic Commerce Research and Applications, 28, 244-260.
Haribhakta, Y., Malgaonkar, A., & Kulkarni, P. (2012). Unsupervised topic detection model and its application in text categorization. Paper presented at the Proceedings of the CUBE International Information Technology Conference, Pune, India. https://doi.org/10.1145/2381716.2381775
Hasan, M., Orgun, M. A., & Schwitter, R. (2019). Real-time event detection from the Twitter data stream using the TwitterNews+ Framework. Information Processing & Management, 56(3), 1146-1165. doi:https://doi.org/10.1016/j.ipm.2018.03.001
Hofmann, T. (1999). Probabilistic latent semantic indexing. Paper presented at the Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval.
Hossny, A. H., Mitchell, L., Lothian, N., & Osborne, G. (2020). Feature selection methods for event detection in Twitter: a text mining approach. Social Network Analysis and Mining, 10(1), 61. doi:10.1007/s13278-020-00658-3
Hou, L., Li, J., Wang, Z., Tang, J., Zhang, P., Yang, R., & Zheng, Q. (2015). NewsMiner: Multifaceted news analysis for event search. Knowledge-Based Systems, 76, 17-29. doi:https://doi.org/10.1016/j.knosys.2014.11.017
Hu, L., Zhang, B., Hou, L., & Li, J. (2017). Adaptive online event detection in news streams. Knowledge-Based Systems, 138, 105-112. doi:https://doi.org/10.1016/j.knosys.2017.09.039
Huang, T.-C., Hsieh, C.-H., & Wang, H.-C. (2018). Automatic meeting summarization and topic detection system. Data Technologies and Applications, 52(3), 351-365. doi:10.1108/DTA-09-2017-0062
Iglesias, J. A., Tiemblo, A., Ledezma, A., & Sanchis, A. (2016). Web news mining in an evolving framework. Information Fusion, 28, 90-98. doi:10.1016/j.inffus.2015.07.004
Jang, B., Kim, I., & Kim, J. W. (2019). Word2vec convolutional neural networks for classification of news articles and tweets. PLOS ONE, 14(8), e0220976. doi:10.1371/journal.pone.0220976
Jang, B., & Yoon, J. (2018). Characteristics analysis of data from news and social network services. Ieee Access, 6, 18061-18073.
Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet allocation (LDA) and topic modeling: models, applications, a survey. Multimedia Tools Appl., 78(11), 15169–15211. doi:10.1007/s11042-018-6894-4
Joo, W., Lee, W., Park, S., & Moon, I.-C. (2020). Dirichlet Variational Autoencoder. Pattern Recognition, 107, 107514. doi:https://doi.org/10.1016/j.patcog.2020.107514
Kanungsukkasem, N., & Leelanupab, T. (2019). Financial Latent Dirichlet Allocation (FinLDA): Feature Extraction in Text and Data Mining for Financial Time Series Prediction. Ieee Access, 7, 71645-71664. doi:10.1109/ACCESS.2019.2919993
Khan, I., Luo, Z., Shaikh, A. K., & Hedjam, R. (2021). Ensemble clustering using extended fuzzy k-means for cancer data analysis. Expert Systems with Applications, 172, 114622. doi:https://doi.org/10.1016/j.eswa.2021.114622
King, G., Schneer, B., & White, A. (2017). How the news media activate public expression and influence national agendas. Science, 358(6364), 776-780. doi:10.1126/science.aao1100
Kingma, D. P., & Welling, M. (2014). Auto-Encoding Variational Bayes. Paper presented at the 2nd International Conference on Learning Representations, {ICLR} 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings.
Koyama, T., Platt, D., & Parida, L. (2020). Variant analysis of SARS-CoV-2 genomes. Bull World Health Organ, 98(7), 495-504. doi:10.2471/blt.20.253591
Lai, Y., He, S., Lin, Z., Yang, F., Zhou, Q., & Zhou, X. (2021). An Adaptive Robust Semi-Supervised Clustering Framework Using Weighted Consensus of Random $k$k-Means Ensemble. IEEE Transactions on Knowledge and Data Engineering, 33(5), 1877-1890. doi:10.1109/TKDE.2019.2952596
Lamsiyah, S., Mahdaouy, A. E., Ouatik, S. E. A., & Espinasse, B. (2021). Unsupervised extractive multi-document summarization method based on transfer learning from BERT multi-task fine-tuning. Journal of Information Science, 0(0), 0165551521990616. doi:10.1177/0165551521990616
Li, X., Wang, Y., Zhang, A., Li, C., Chi, J., & Ouyang, J. (2018). Filtering out the noise in short text topic modeling. Information Sciences, 456, 83-96. doi:https://doi.org/10.1016/j.ins.2018.04.071
Liu, B., Han, F. X., Niu, D., Kong, L., Lai, K., & Xu, Y. (2020). Story Forest: Extracting Events and Telling Stories from Breaking News. ACM Trans. Knowl. Discov. Data, 14(3), Article 31. doi:10.1145/3377939
Liu, H., He, D., & Chan, S. (2021). Fraudulent News Headline Detection with Attention Mechanism. Computational Intelligence and Neuroscience, 2021, 6679661. doi:10.1155/2021/6679661
Liu, T., Xue, F., Sun, J., & Sun, X. (2020). A survey of event analysis and mining from social multimedia. Multimedia Tools and Applications, 79(45), 33431-33448. doi:10.1007/s11042-019-7567-7
Liu, X., & Huet, B. (2016). Event-based cross media question answering. Multimedia Tools Appl., 75(3), 1495-1508. doi:10.1007/s11042-014-2085-0
Liu, Y., Peng, H., Li, J., Song, Y., & Li, X. (2020). Event detection and evolution in multi-lingual social streams. Frontiers of Computer Science, 14(5), 145612. doi:10.1007/s11704-019-8201-6
Lu, X., Zhou, X., Wang, W., Lio, P., & Hui, P. (2020). Domain-Oriented Topic Discovery Based on Features Extraction and Topic Clustering. Ieee Access, PP, 1-1. doi:10.1109/ACCESS.2020.2994516
Luo, X., Xuan, J., Lu, J., & Zhang, G. (2016). Measuring the Semantic Uncertainty of News Events for Evolution Potential Estimation. Acm Transactions on Information Systems, 34(4). doi:10.1145/2903719
Ma, T., Yu, T., Wu, X., Cao, J., Al-Abdulkarim, A., Al-Dhelaan, A., & Al-Dhelaan, M. (2020). Multiple clustering and selecting algorithms with combining strategy for selective clustering ensemble. Soft Computing, 24(20), 15129-15141. doi:10.1007/s00500-020-05264-1
Ma, W.-Y., & Chen, K.-J. (2003). Introduction to CKIP Chinese word segmentation system for the first international Chinese Word Segmentation Bakeoff. Paper presented at the Proceedings of the second SIGHAN workshop on Chinese language processing - Volume 17, Sapporo, Japan.
Mahmoudi, M., Akbarzadeh, H., Parvin, H., Nejatian, S., Rezaie, V., & Alinejad-Rokny, H. (2020). Consensus function based on cluster-wise two level clustering. Artificial Intelligence Review, 54, 639-665.
Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval: Cambridge University Press.
Meel, P., & Vishwakarma, D. K. (2020). Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities. Expert Systems with Applications, 153, 112986. doi:https://doi.org/10.1016/j.eswa.2019.112986
Mele, I., Bahrainian, S. A., & Crestani, F. (2019). Event mining and timeliness analysis from heterogeneous news streams. Information Processing & Management, 56(3), 969-993. doi:https://doi.org/10.1016/j.ipm.2019.02.003
Miao, Y., Yu, L., & Blunsom, P. (2016). Neural Variational Inference for Text Processing. Paper presented at the Proceedings of The 33rd International Conference on Machine Learning, Proceedings of Machine Learning Research. http://proceedings.mlr.press/v48/miao16.html
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
Nolasco, D., & Oliveira, J. (2019). Subevents detection through topic modeling in social media posts. Future Generation Computer Systems, 93, 290-303. doi:https://doi.org/10.1016/j.future.2018.09.008
Osakwe, Z. T., Ikhapoh, I., Arora, B. K., & Bubu, O. M. (2020). Identifying public concerns and reactions during the COVID-19 pandemic on Twitter: A text-mining analysis. Public Health Nursing, 00, 1-7. doi:https://doi.org/10.1111/phn.12843
Park, H., Park, T., & Lee, Y.-S. (2019). Partially collapsed Gibbs sampling for latent Dirichlet allocation. Expert Systems with Applications, 131, 208-218. doi:https://doi.org/10.1016/j.eswa.2019.04.028
Qian, Y., Deng, X., Ye, Q., Ma, B., & Yuan, H. (2019). On detecting business event from the headlines and leads of massive online news articles. Information Processing & Management, 56(6), 102086. doi:https://doi.org/10.1016/j.ipm.2019.102086
Rasouli, E., Zarifzadeh, S., & Jahangard, A. (2020). WebKey: a graph-based method for event detection in web news. Journal of Intelligent Information Systems, 54. doi:10.1007/s10844-019-00576-7
Reddy, H., Raj, N., Gala, M., & Basava, A. (2020). Text-mining-based Fake News Detection Using Ensemble Methods. International Journal of Automation and Computing, 17(2), 210-221. doi:10.1007/s11633-019-1216-5
Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084.
Repp, O., & Ramampiaro, H. (2018). Extracting news events from microblogs. Journal of Statistics & Management Systems, 21(4), 695-723. doi:10.1080/09720510.2018.1486273
Rezaeinia, S. M., Rahmani, R., Ghodsi, A., & Veisi, H. (2019). Sentiment analysis based on improved pre-trained word embeddings. Expert Systems with Applications, 117, 139-147. doi:https://doi.org/10.1016/j.eswa.2018.08.044
Ronan, T., Anastasio, S., Qi, Z., Tavares, P. H. S. V., Sloutsky, R., & Naegle, K. (2018). OpenEnsembles: A Python Resource for Ensemble Clustering. J. Mach. Learn. Res., 19, 26:21-26:26.
Sardarizadeh, K. D. a. S. (2022). Ukraine invasion: Misleading claims continue to go viral. Retrieved from https://www.bbc.com/news/60554910
Shi, L.-L., Lu, L., Wu, Y., Jiang, L., & Hardy, J. (2017). Event Detection and User Interest Discovering in Social Media Data Streams. Ieee Access, 5, 20953-20964. doi:10.1109/access.2017.2675839
Srijith, P. K., Hepple, M., Bontcheva, K., & Preotiuc-Pietro, D. (2017). Sub-story detection in Twitter with hierarchical Dirichlet processes. Information Processing & Management, 53(4), 989-1003. doi:https://doi.org/10.1016/j.ipm.2016.10.004
Srivastava, A., & Sutton, C. (2017). Autoencoding variational inference for topic models. Paper presented at the ICLR 2017.
Sun, Q., Xu, F., & Zhibo, C. (2011). Topic feature extraction of Chinese news title. Paper presented at the 2011 International Conference of Information Technology, Computer Engineering and Management Sciences.
Tian, R., Mao, Y., & Zhang, R. (2020, nov). Learning VAE-LDA Models with Rounded Reparameterization Trick. Paper presented at the Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Online.
Toujani, R., & Akaichi, J. (2019). Event news detection and citizens community structure for disaster management in social networks. Online Information Review, 43(1), 113-132. doi:10.1108/OIR-03-2018-0091
Tshitoyan, V., Dagdelen, J., Weston, L., Dunn, A., Rong, Z., Kononova, O., . . . Jain, A. (2019). Unsupervised word embeddings capture latent knowledge from materials science literature. Nature, 571(7763), 95-98. doi:10.1038/s41586-019-1335-8
Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395-416. doi:10.1007/s11222-007-9033-z
Wang, B., & Kuo, C. C. (2020). SBERT-WK: A Sentence Embedding Method by Dissecting BERT-based Word Models. IEEE/ACM Transactions on Audio, Speech, and Language Processing, PP, 1-1. doi:10.1109/TASLP.2020.3008390
WHO. (2022). world health organization coronavirus (COVID-19) Dashboard. Retrieved from https://covid19.who.int/
Wang, H., Zhao, Z., Guo, Z., Wang, Z., & Xu, G. (2017). An Improved Clustering Method for Detection System of Public Security Events Based on Genetic Algorithm and Semisupervised Learning. Complexity, 2017, 8130961. doi:10.1155/2017/8130961
Wang, J., li, L., & Wu, X. (2017). LDA-Based Topic Strength Analysis. Computing and Informatics, 36, 1283-1311. doi:10.4149/cai_2017_6_1283
Wu, D., Yang, R., & Shen, C. (2021). Sentiment word co-occurrence and knowledge pair feature extraction based LDA short text clustering algorithm. Journal of Intelligent Information Systems, 56(1), 1-23. doi:10.1007/s10844-020-00597-7
Wu, Y., Zhao, S., & Li, W. (2020). Phrase2Vec: Phrase embedding based on parsing. Information Sciences, 517, 100-127. doi:https://doi.org/10.1016/j.ins.2019.12.031
Xu, G., Meng, Y., Chen, Z., Qiu, X., Wang, C., & Yao, H. (2019). Research on Topic Detection and Tracking for Online News Texts. Ieee Access, 7, 58407-58418. doi:10.1109/ACCESS.2019.2914097
Yan, Q., Tang, Y., Yan, D., Wang, J., Yang, L., Yang, X., & Tang, S. (2020). Impact of media reports on the early spread of COVID-19 epidemic. Journal of Theoretical Biology, 502, 110385. doi:https://doi.org/10.1016/j.jtbi.2020.110385
Yang, Y., Liu, Y., Lu, X., Xu, J., & Wang, F. (2020). A named entity topic model for news popularity prediction. Knowledge-Based Systems, 208, 106430. doi:https://doi.org/10.1016/j.knosys.2020.106430
Zhang, F. (2019). A hybrid structured deep neural network with Word2Vec for construction accident causes classification. International Journal of Construction Management, 1-21. doi:10.1080/15623599.2019.1683692
Zhang, P., Wang, S., Li, D., Li, X., & Xu, Z. (2020). Combine Topic Modeling with Semantic Embedding: Embedding Enhanced Topic Model. IEEE Transactions on Knowledge and Data Engineering, 32(12), 2322-2335. doi:10.1109/TKDE.2019.2922179
Zhang, Y., Lu, J., Liu, F., Liu, Q., Porter, A., Chen, H., & Zhang, G. (2018). Does deep learning help topic extraction? A kernel k-means clustering method with word embedding. Journal of Informetrics, 12(4), 1099-1117. doi:https://doi.org/10.1016/j.joi.2018.09.004
Zhao, T., Luo, X., Qin, W., Huang, S., & Xie, S. (2018). Topic detection model in a single-domain corpus inspired by the human memory cognitive process. Concurrency and Computation: Practice and Experience, 30(19), e4642. doi:https://doi.org/10.1002/cpe.4642
Zhao, X., Cao, F., & Liang, J. (2018). A sequential ensemble clusterings generation algorithm for mixed data. Applied Mathematics and Computation, 335, 264-277. doi:https://doi.org/10.1016/j.amc.2018.04.035
Zheng, C. T., Liu, C., & Wong, H. S. (2018). Corpus-based topic diffusion for short text clustering. Neurocomputing, 275, 2444-2458. doi:https://doi.org/10.1016/j.neucom.2017.11.019
Zhou, P., Du, L., Liu, X., Shen, Y. D., Fan, M., & Li, X. (2021). Self-Paced Clustering Ensemble. IEEE Transactions on Neural Networks and Learning Systems, 32(4), 1497-1511. doi:10.1109/TNNLS.2020.2984814
Zhou, Q., & Zhang, C. (2017). Emotion evolutions of sub-topics about popular events on microblogs. The Electronic Library, 35(4), 770-782. doi:10.1108/EL-09-2016-0184
校內:2028-02-10公開