簡易檢索 / 詳目顯示

研究生: 張晉維
Chang, Chin-Wei
論文名稱: 辦公空間空調與換氣使用管理與節能策略
Management and energy-saving strategies for air conditioning and ventilation in office spaces
指導教授: 潘振宇
Pan, Chen-Yu
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 153
中文關鍵詞: 換氣次數空調設定溫度設備節能自然換氣室內舒適溫度
外文關鍵詞: air changes per hour (ACH), air conditioning temperature setting point, energy consumption, natural ventilation, indoor comfort temperature
相關次數: 點閱:49下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 換氣率(ACH, air changes per hour)、室內空氣品質(IAQ, indoor air quality)與室內熱舒適度之間的平衡是現代空調所關注之議題,近年來淨零建築(Net Zero)的思潮下,設備使用的節能亦顯格外重要。本研究討論臺南地區辦公空間的使用,針對空調與換氣設備進行了夏季與冬季兩種情境下使用管理的探討。研究採用示蹤氣體技術(Tracer-gas Techniques)探討換氣次數,並用電力計實測空調耗能量,亦探討室內舒適度(溫度、濕度、THW與THI)與人員實測室內CO2濃度指標。夏季探討項目為空調的最適設定溫度與換氣需求量;而冬季則為辦公室開窗自然換氣的效果。在空調設定溫度方面,本研究空調設備在設定20°C〜24°C時出現主機容量不足設備滿載運轉情況,設定溫度25°C與26°C時發生變頻,變頻條件下提高設定溫度有助於減少空調耗電量,綜合本研究採用舒適度指標與節能觀點,建議辦公空間空調設定溫度應設定在25±1°C。換氣次數方面,本研究空調設備在5 ACH(h-1)以上時出現原先主機容量不足滿載運轉的情況,在空調主機能力範圍內(5ACH以下),室外機耗能與換氣回數的多寡成正相關。根據本研究於夏季實測四小時(10:00〜14:00)之空調電流數值,並假設空調運轉效率100% 的前提下代入電費計算公式。發現採用5ACH比4ACH增加11% 電能消耗以及22% 電費,而在更高換氣需求時(5ACH至8ACH)則差異不大。雖然ASHRAE建議辦公空間至少要有4回換氣,但由於設備本身的容量限制與變頻情況,本研究提出依室內人數彈性調整換氣回數的操作量表。在冬季自然換氣方面,在面北(迎風面)開窗條件下對向開窗5〜15公分(面積0.04~0.11m2),既能滿足ASHRAE 4回換氣的標準,溫度也能控制在舒適條件。若僅有單開窗條件,建議開窗大小25〜30公分( 面積0.19 ~0.23 m2)較能滿足換氣標準。以上結果可提供辦公室使用者對於空調系統與換氣方式之相關行為建議。

    The balance between air changes per hour (ACH), indoor air quality (IAQ), and thermal comfort has always been a concern in modern life. Besides, in the context of the Net-Zero building trend , energy efficiency is paramount. This study focuses on the management of HVAC and ventilation systems in office spaces in Tainan, Taiwan, considering different seasons (summer and winter). Tracer-gas techniques were employed to investigate ventilation rates, while power meters were used to measure HVAC energy consumption. Additionally, indoor comfort parameters (temperature, humidity, THW, and THI) and CO2 concentration were monitored during human occupancy. The study found that the air conditioning units experienced capacity shortages and operated at full load when set at 20°C -24°C. When the set temperature was 25°C or 26°C, the units operated in variable frequency mode, and helped reduce energy consumption. From the perspective of comfort and energy savings, the study recommends setting the air conditioning temperature at 25±1°C for office spaces. In terms of ACH, the study observed that when the air conditioning units operated at 5 ACH or higher, they experienced capacity shortages and operated at full load. Within the capacity range of the air conditioning units (below 5 ACH), the energy consumption of air conditioning was positively correlated with ACH. Based on the measured air conditioning current values over four hours (10:00 am to 2:00 pm) in the summer and assuming 100% operational efficiency, the calculation showed that using 5 ACH increased energy consumption by 11% and electricity costs by 22% compared to 4 ACH. However, at higher ventilation demands (from 5 ACH to 8 ACH), the difference was minimal. Although ASHRAE recommends at least 4 ACH for office spaces, due to the capacity limitations and variable frequency conditions of the equipment, the study suggests a flexible adjustment of ACH based on the number of occupants. For natural ventilation in winter, opening windows on the north-facing side (windward side) by 5-15 cm (area 0.04-0.11 m²) can meet the ASHRAE standard of 4 ACH while maintaining comfortable temperatures. If only a single window can be opened, it is recommended to open the window by 25-30 cm (area 0.19-0.23 m²) to meet the ventilation standards. These findings can provide office users with relevant behavioral recommendations for air conditioning systems and ventilation methods.

    摘要I 誌謝XV 目錄XVI 圖目錄XIX 表目錄XXIII 第一章 、前言與動機1 1.1研究背景1 1.2 研究動機3 1.3研究目的4 1.4研究範圍與流程5 第二章 、文獻回顧與學術理論8 2.1室內通風換氣方式與相關文獻及規範8 2.1.1通風換氣的重要性8 2.1.2室內換氣方法與標準10 2.1.3室內有害物質濃度標準相關規定-二氧化碳與臭氣13 2.2空調設備使用管理與節能15 2.2.1空調使用行為15 2.2.2空調溫度設定與節能16 2.2.3換氣量與節能17 2.3室內舒適溫、濕度條件18 2.3.1室內舒適溫、濕度國際規範18 2.3.2室內舒適溫度相關研究20 2.3.3自然換氣與舒適溫度相關研究20 2.3.4 THW與THI指標21 2.4示蹤氣體濃度衰減法22 第三章 、研究方法24 3.1研究空間說明24 3.2實驗用設備與偵測儀器說明26 3.2.1空調設備26 3.2.2換氣設備31 3.2.3偵測儀器33 3.2.4數據採樣方法34 3.3實驗組合與設定說明36 3.3.1實驗室內、外條件設定36 3.3.2夏季空調溫度設定組合38 3.3.3夏季混合換氣設定38 3.3.4人員實測設定41 3.3.5冬季自然換氣次數組合43 3.3.6自然換氣人員實測設定44 3.4混合換氣與自然換氣實驗流程45 3.4.1夏季冷房混合換氣示蹤氣體濃度衰減法實驗45 3.4.2夏季混合換氣人員實測47 3.4.3冬季自然換氣示蹤氣體濃度衰減法實驗48 第四章 、研究結果50 4.1夏季空調設定溫度與耗電量之平衡50 4.1.1 設定溫度與耗電量50 4.1.2 設定溫度與電費56 4.1.3 設定溫度與舒適度58 4.1.4 冷房設定溫度綜合比較(小結)62 4.2 夏季混合換氣次數與空調耗電量之平衡63 4.2.1換氣次數與CO2濃度(濃度衰減法實驗結果)63 4.2.2 不同人員密度之換氣量69 4.2.3 換氣次數與耗電量72 4.2.4換氣次數與舒適度78 4.2.5 換氣次數綜合討論(小結)89 4.3 冬季自然換氣92 4.3.1自然換氣分析92 4.3.2 室內溫、濕度與二氧化碳濃度分析95 4.3.3 自然換氣綜合討論102 第五章 、結論106 5.1 空調設定與耗電量107 5.2 夏季冷房換氣與空調耗電108 5.3 冬季自然換氣110 5.4 後續研究與建議111 參考文獻113 附錄1122 附錄2123 附錄3124

    中文文獻
    [1] 建築環境工學(修訂二板)。簡裕榮、薛寧心譯。台北,六合出版社。2004。
    [2] BERS建築能效評估手冊。內政部建築研究所。2024。
    [3] 政府機關辦公室節能技術手冊。經濟部能源局。
    [4] 產業節約能源服務報告。中技社能源中心。1999。
    [5] 89年度政府機關辦公室節能措施目標表填報統計。中技社能源中心。1999。
    [6] 政府機關辦公室節約能源措施。經濟部能源局。2000。
    [7] 辦公建築全年空調耗能量簡易預測法之研究。黃國倉、林憲德。建築學報期刊第58期第113至147頁。2006。
    [8] 辦公建築生命週期節能與二氧化碳減量評估之研究。黃國倉。2006。
    [9] 夏熱冬冷地區建築節能技術。付祥釗。中國建築工業出版社,中華人民共和國建設不建築節能辦公室。2002。
    [10] 中華民國室內空氣品質標準。空氣品質管理法第七條第二項。行政院環境保護署。臺灣臺北市。2012。
    [11] 公告場所室內空氣品質檢驗測定管理辦法。行政院環境保護署。臺灣臺北市。2022。
    [12] 內政部建築研究所綠建築評估手冊基本型。內政部建築研究所。臺灣新北市。2022。
    [13] 中华人民共和國國家標准。GB50019-2015工業建築供暖通風與空氣調節設計規範。中国國家標準化管理委員會。中国北京市。2015。
    [14] 中华人民共和國国家標准。GB50325-2020民用建築工程室內環境污染控制標準。中國國家標準化管理委員含。中国北京市。2020。
    [15] 中华人民共和國國家標准。GB/T18883-2022室內空氣質量標準。中國國家標準化管理委員會。中国北京市2022。
    [16] 中华人民共和國國家標准。GB5036-2012民用建築供暖通風與空氣調節設計規範。中国国家標準化管理委員會。中國北京市。2012。
    [17] 各類場所消防安全設備設置標準。行政院內政部。台灣臺北市。2021。
    [18] 邱英浩,戴育澤,&吳孟芳(2010).利用自然通技術改善室內熱環境及通風效能之研究-以慈濟台中分會為例.Joumnal ofarchitecture11(2,111-136
    [19] 空氣品質標準。行政院環保署。台灣台北市。2020。
    [20] 林憲德人居熱環境。詹氏書局臺灣臺北市。2009。
    [21] 林憲德綠建築91技術氏書局。灣臺北市。2016。
    [22] 翁愷廷。「空間具高程差之老舊大型講廳換氣效益評估及使用管理」。碩士論文,國立成功大學建築學系,2023。
    [23] 圖解建築物理學概論。吳啟哲譯。台北,建築情報雜誌。1994。
    [24] 高層建築空調與節能。錢以明。p271 -p.350。1990
    [25] 臺灣建築 能源模擬解析用逐時標準氣象資料TMY3之建置與研究。何明錦,黃國倉,王仁俊,徐文元,林政賢。新北市,內政部建築研究所。2013。
    [26] 交通部中央氣象局,觀測資料查詢
    [27] 綠建築評估手冊─基本型。新北市,內政部建築研究所。2019。
    日文文獻
    [1] 東賢一(2018)。室内環境中における二酸化炭素の吸入曝露によるヒトへの影響。 室内環境,21(2), 113-120。
    [2] 作業環境測定基準。厚生労働省。日本東京都。2020。
    [3] 空気調和・衛生工学会。空気調和設備計画設計の実務の知識・空気調和衛生工学会。日本東京都。2000。
    [4] 建築物における衛生的環境の確保に関する法律施行規則。厚生勞動省。日本東京都。2021。
    [5] 建築物環境衛生管理基準について。厚生勞動省。日本東京都。2022。
    [6] 建築基準法施行令。国土交通省。日本東京都。2020。

    英文文獻
    [1] IEA(2021). Net Zero by 2050: A Roadmap for the Global Energy Sector
    [2] William J.N. Turner., Jennifer M. Logue., Craig P. Wray. (2013). A combined energy and IAQ assessment of the potential value of commissioning residential mechanical ventilation systems. Building and Environment, Volume 60, Pages 194-201
    [3] Zhitao Cui., Yongjun Sun., Dian-ce Gao., Jiaxin Ji., Wenke Zou. (2023). Computer-vision-assisted subzone-level demand-controlled ventilation with fast occupancy adaptation for large open spaces towards balanced IAQ and energy performance. Building and Environment, Volume 239, 110427
    [4] Fusuo Xu., Zhi Gao . (2022). Study on indoor air quality and fresh air energy consumption under different ventilation modes in 24-hour occupied bedrooms in Nanjing, using Modelica-based simulation . Energy and Buildings Volume 257, 111805
    [5] Lei Zhao., Junjie Liu., Jianlin Ren. (2018). Impact of various ventilation modes on IAQ and energy consumption in Chinese dwellings: First long-term monitoring study in Tianjin, China . Building and Environment Volume 143, Pages 99-106
    [6] Canha, N., Lage, J., Coutinho, J. T., Alves, C., & Almeida, S. M. (2019). Comparison of indoor air quality during sleep in smokers and non-smokers’ bedrooms: A preliminary study. Environmental Pollution, 249, 248-256.
    [7] Kuga, K., Ito, K., Chen, W., Wang, P., & Kumagai, K. (2020). A numerical investigation of the potential effects of e-cigarette smoking on local tissue dosimetry and the deterioration of indoor air quality. Indoor Air, 30(5), 1018-1038.
    [8] Shukla, D., & Dutta, V. (2022). Indoor Air Quality Monitoring of Urban and Rural Households of a North Indian City During Cooking Hours. Aerosol Science and Engineering, 6(1), 86-98.
    [9] Shukla, D., & Dutta, V. (2022). Indoor Air Quality Monitoring of Urban and Rural Households of a North Indian City During Cooking Hours. Aerosol Science and Engineering, 6(1), 86-98.
    [10] Mata, T. M., Martins, A. A., Calheiros, C. S. C., Villanueva, F., Alonso-Cuevilla, N. P., Gabriel, M. F., & Silva, G. V. (2022). Indoor Air Quality: A Review of Cleaning Technologies. Environments, 9(9).
    [11] Marques, G., Ferreira, C. R., & Pitarma, R. (2019). Indoor Air Quality Assessment Using a CO2 Monitoring System Based on Internet of Things. Journal of Medical Systems, 43(3), 67.
    [12] Shriram, S., Ramamurthy, K., & Ramakrishnan, S. (2019). Effect of occupant-induced indoor CO2 concentration and bioeffluents on human physiology using a spirometric test. Building and Environment, 149, 58-67.
    [13] Gall, E.T., & Cheung,T., & Luhung, I., & Schiavon, S ., & Nazaroff, W.W. (2016). Real-time monitoring of personal exposures to carbon dioxide. Building and Environment, 104, 59-67.
    [14] Dusan, L., & Serra, Y. (2021). Occupant satisfaction with indoor environmental quality, sick building syndrome (SBS) symptoms and self-reported productivity before and after relocation into WELL-certified office buildings. Building and Environment, 204, 108183.
    [15] Shaeri, J., Mahdavinejad, M., Vakilinejad, R., Bazazzadeh, H., & Monfared, M. (2023). Effects of sea-breeze natural ventilation on thermal comfort in low-rise buildings with diverse atrium roof shapes in BWh regions. Case Studies in Thermal Engineering, 41, 102638.
    [16] Muelas, Á., Remacha, P., Pina, A., Tizné, E., El-Kadmiri, S., Ruiz, A., Aranda, D., & Ballester, J. (2022). Analysis of different ventilation strategies and CO2 distribution in a naturally ventilated classroom. Atmospheric Environment, 283, 119176.
    [17] Fawwaz Alrebei, O., Obeidat, L. M., Ma’bdeh, S. N., Kaouri, K., Al-Radaideh, T., & Amhamed, A. I. (2022). Window-Windcatcher for Enhanced Thermal Comfort, Natural Ventilation and Reduced COVID-19 Transmission. Buildings, 12(6).
    [18] Pawel Wargocki., David P. Wyon(2017). Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Building and Environment, 2017, 112, 359-366.
    [19] ASHRAE Standard 55. (2010). Thermal Environmental Conditions for Human Occupancy, American Society of Heating, Refrigerating, and Air-conditioning Engineers, P7〜8, ISSN 1041-2336.
    [20] ASHRAE Standard 62.1. (2022). Ventilation and Acceptable Indoor Air Quality , American Society of Heating, Refrigerating, and Air-conditioning Engineers, ISSN 1041-2336
    [21] Wei Su., Zhengtao Ai., Jing Liu., Bin Yang., Faming Wang.(2023). Maintaining an acceptable indoor air quality of spaces by intentional natural ventilation or intermittent mechanical ventilation with minimum energy use. Applied Energy, 348, 121504.
    [22] Camila Grassi., Karin Maria Soares Chvatal., Marcel Schweiker.(2022). Stochastic models for window opening and air-conditioning usage in mixed-mode offices for a humid subtropical climate in Brazil. Building and Environment, Volume 225, 109579
    [23] H.B. Rijal., M.A. Humphreys., J.F. Nicol.(2008). How do the occupants control the temperature in mixed-mode buildings? predicting the use of passive and active controls, in: Proceedings of Conference: Air Conditioning and the Low Carbon Cooling Challenge - Windsor 2008 Conference.
    [24] R.F. Rupp., R.K. Andersen., J. Toftum, E. Ghisi.(2021). Occupant behaviour in mixedmode office buildings in a subtropical climate: Beyond typical models of adaptive actions. Building and Environment, 107541.
    [25] J. Kim., R. de Dear., T. Parkinson., C. Candido.(2017). Understanding patterns of adaptive comfort behaviour in the sydney mixed-mode residential context. Building and Environment, Volume 141, p274–283
    [26] R. De Vecchi., C. Candido., R. de Dear ., R. Lamberts.(2017). Thermal comfort in office buildings: Findings from a field study in mixed-mode and fully-air conditioning environments under humid subtropical conditions, Building and Environment, Volume 123, p 672-683.
    [27] Nan Wang., Jiangfeng Zhang., Xiaohua Xia.(2013). Energy consumption of air conditioners at different temperature set points, Energy and Buildings, Volume 65, p412-418.
    [28] Haiyan Yan., Fangning Shi ., Zhen Sun ., Guodong Yuan ., Minli Wang ., Mengru Dong .(2022). Thermal adaptation of different set point temperature modes and energy saving potential in split air-conditioned office buildings during summer, Building and Environment, Volume 225, 109565.
    [29] Z. Zhang., Y. Zhang., A. Khan.(2020). Thermal comfort of people in a super high-rise building with central air-conditioning system in the hot-humid area of China, Energy and Buildings, Volume 209, 109727.
    [30] Z. Wu., N. Li., P. Wargocki., J. Peng., J. Li., H. Cui.(2019). Adaptive thermal comfort in naturally ventilated dormitory buildings in Changsha, China, Energy and Buildings, Volume 186, p56–70.
    [31] Z. Fang., S. Zhang., Y. Cheng., A.M.L. Fong., M.O. Oladokun., Z. Lin., H. Wu i.(2018). Field study on adaptive thermal comfort in typical air conditioned classrooms, Building and Environment, Volume 133, p 73–82.
    [32] T.P. Lin.(2009). Thermal perception, adaptation and attendance in a public square in ho and humid regions, Building and Environment, Volume 44.
    [33] Y. Geng., W. Ji., B. Lin., Y. Zhu.(2017). The impact of thermal environment on occupant IEQ perception and productivity s, Building and Environment, Volume 121 p158–167.
    [34] R.L. Hwang., M.-J. Cheng.(2007). Field survey on human thermal comfort reports in airconditioned offices in taiwan, Open Construct. Build Technol. p8–13,.
    [35] Yaw-Shyan Tsay ., Ruijun Chen., Chen-Chi Fan . (2022). Study on thermal comfort and energy conservation potential of office buildings in subtropical Taiwan. Environment International, 108625.
    [36] Ahmed, T., Kumar, P., & Mottet, L. (2021). Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality. Renewable and Sustainable Energy Reviews, 138, 110669.
    [37] Gil-Baez. M., Lizana. J., Becerra Villanueva, J. A., Molina-Huelva. M., Serrano-Jimenez. A., & Chacartegui, R. (2021). Natural ventilation in classrooms for healthy schools in the COVID era in Mediterranean climate. Building and Environment, 206, 108345.
    [38] Heracleous. C., & Michael, A. (2019). Experimental assessment of the impact of natural ventilation on indoor air quality and thermal comfort conditions of educational buildings in the Eastern Mediterranean region during the heating period. Journal of Building Engineering, 26, 100917.
    [39] Azuma, K., Kagi, N., Yanagi, U., & Osawa, H. (2018). Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environment International, 121, 51-56.
    [40] Persily. A. (2015). Challenges in developing ventilation and indoor air quality standards: The story of ASHRAE Standard 62. Building and Environment, 2015, 91, 61-69.
    [41] Shriram, S., Ramamurthy, K., & Ramakrishnan, S. (2019). Effect of occupant-induced indoor CO2 concentration and bioeffluents on human physiology using a spirometric test. Building and Environment, 149, 58-67.
    [42] Chatzidiakou. L., Mumovic. D & Summerfield. A.(2015). Is CO2 a good proxy for indoor air quality in classrooms? Part 1: The interrelationships between thermal conditions, CO2 levels, ventilation rates and selected indoor pollutants. Building Services Engineering Research and Technology , p129-161.
    [43] Ramalho. O., Wyart. G., Mandin. C., Blondeau. P., Cabanes. P.-A., Leclerc. N., Mullot. J.-U., Boulanger. G& Redaelli. M .(2015). Association of carbon dioxide with indoor air pollutants and exceedance of health guideline values, Building and Environment, 93, p 115-124.
    [44] Cui. S., Cohen. M., Stabat. P.,& Marchio. D.(2015). CO2 tracer gas concentration decay method for measuring air change rate. Building and environment, 84, 162-169
    [45] G. Marques., C. R. Ferreira & R. Pitarma.(2019). Indoor Air Quality Assessment Using a CO2 Monitoring System Based on Internet of Things, Journal of Medical Systems, p.67.
    [46] R. Qiao., X. Lou., Y. Sun & Y. Liu.(2022). Effects of occupant behaviors on perceived dormitory air quality and sick building syndrome symptoms among female college students, Indoor Air, e13153.
    [47] Muelas. Á., Remacha. P., Pina. A., Tizné. E., El-Kadmiri. S., Ruiz. A, Aranda. D & Ballester. J.(2022). Analysis of different ventilation strategies and CO2 distribution in a naturally ventilated classroom, Atmospheric Environment, 119176.
    [48] Fawwaz Alrebei. O., Obeidat. L. M., Ma’bdeh. S. N., Kaouri. K, Al-Radaideh. T & Amhamed. A. I.(2022). Window-Windcatcher for Enhanced Thermal Comfort, Natural Ventilation and Reduced COVID-19 Transmission, Buildings, 12(6).
    [49] Wei Su., Zhengtao Ai., Jing Liu., Bin Yang., Faming Wang.(2023). Maintaining an acceptable indoor air quality of spaces by intentional natural ventilation or intermittent mechanical ventilation with minimum energy use.Applied, Energy, 348, 121504

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE