| 研究生: |
周心宇 Chou, Hsin-Yu |
|---|---|
| 論文名稱: |
具溝槽之板鰭管式熱交換器的混合對流熱傳研究 Study on Mixed Convection Heat Transfer of Grooved Plate Finned Tube Heat Exchanger |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 逆算法 、CFD模擬 、板鰭管式熱交換器 、垂直抽風混合對流 |
| 外文關鍵詞: | Inverse method, CFD, Mixed convection, U-type heat convection |
| 相關次數: | 點閱:57 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以三維CFD軟體搭配實驗及逆向方法研究垂直抽風板鰭管式熱交換器於矩形流道的混合對流熱流特性。探討具溝槽鰭片於不同入口流速及鰭片間距之影響,因此設計方形鰭片、雙溝槽H型鰭片及單溝槽U型鰭片。由於流體流經鰭片時會產生複雜的三維流動,鰭片上不同區域熱傳系數不盡相同,故將鰭片切割為八個子區域,搭配逆向方法及最小平方法快速找尋各個子區域之熱傳系數預估值,並以此計算鰭片表面之Q及h̅預估值。另一方面,本研究使用CFD軟體模擬取得熱流特性結果及各種後處理視圖,利用實驗數據及逆向方法之Q及h̅預估值驗證紊流模式選用及網格劃分之適當性。結果指出,垂直抽風板鰭管式熱交換器於入口流速為1m/s ~ 5m/s時,RNG k-ε為最適當的流動模式;入口流速對具溝槽鰭片之熱傳增幅有決定性之影響;U型鰭片相較H型鰭片有較佳的熱傳表現。
This study uses three-dimensional computational fluid dynamics(CFD) numerical simulation along with inverse method and experimental temperature data to investigate the mixed convection heat transfer of grooved plate finned tube heat exchanger in rectangular tunnel. The effects of inlet velocity Va and fin spacing S are investigated. Three kinds of fins including plate fin, H-type fin and U-type fin are designed for this study. The inverse method in conjunction with finite difference method and least-squares scheme are applied to predict the heat transfer characteristics. On the other hand, the temperature contour, streamline and heat characteristics are determined by CFD. In order to obtain more accurate simulation results, the selection of flow models and mesh system must be tested by the experimental and inverse results. It is found that RNG k-ε is the most suitable flow model for present work. U-type fin has better performance in heat transfer than H-type fin.
[1] F.E.M. Saboya and E.M. Sparrow, Local and average transfer coefficients for one-row plate fin and tube heat exchanger configurations, ASME J. Heat Transfer, vol. 96(1974), pp. 265-272.
[2] F.E.M. Saboya and E.M. Sparrow, Transfer characteristics of two-row plate fin and tube heat exchanger configurations, Int. J. Heat Mass Transfer, vol. 19(1976), pp. 41-49.
[3] E.C. Rosman, P. Carajilescov and F.E.M. Saboya, Performance of one- and two-row tube and plate fin heat exchanger, ASME J. Heat Transfer, vol. 106(1984), pp. 627-632.
[4] C.C. Wang and K.Y. Chi, Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, Part I: New experimental data, Int. J. Heat Mass Transfer, vol. 43(2000), pp. 2681-2691.
[5] C.C. Wang and K.Y. Chi, Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, Part II: Correlation, Int. J. Heat Mass Transfer, vol. 43(2000), pp. 1651-1659.
[6] H.T. Chen and W.L. Hsu, Estimation of heat-transfer characteristics on a vertical annular circular fin of finned-tube heat exchangers in forced convection, Int. J. Heat Mass Transfer, vol. 51(2008), pp.1920-1932.
[7] H.T. Chen, J.C. Chou and H.C. Wang, Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings, Int. J. Heat Mass Transfer, vol. 50(2007), pp. 45-57.
[8] B. Watel, S. Harmand and B. Desmet, Influence of flow velocity and fin spacing on the forced convective heat transfer from an annular-finned tube, JSME Int. J., Ser. B, vol. 42(1999), pp. 56-64.
[9] C.W. Lu, J.M. Huang, W.C. Nien and C.C. Wang, A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger, Energy Conversion Management, vol. 52(2011), pp. 1638-1643.
[10] M.S. Mon and U. Gross, Numerical study of fin-spacing effects in annular-finned tube heat exchangers, Int. J. Heat Mass Transfer, vol. 47(2004), pp. 1953-1964.
[11] A. Kumar, J.B. Joshi, A.K. Nayak and P.K. Vijayan, 3D CFD simulations of air cooled condenser-III: Thermal–hydraulic characteristics and design optimization under forced convection conditions, Int. J. Heat Mass Transfer, vol. 93(2016), pp. 1227-1247.
[12] H.T. Chen, Y.S. Lin, P.C. Chen and J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters, Int. J. Heat Mass Transfer, vol. 100(2016), pp. 320-331.
[13] H.T. Chen, Y.J. Chiu, C.S. Liu, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transfer, vol. 109(2017), pp. 378-392.
[14] A.M. Gonzalez, M. Vaz Jr., P.S.B. Zdanski, A hybrid numerical-experimental analysis of heat transfer by forced convection in plate-finned heat exchangers, Appl. Therm. Eng., vol. 148(2019), pp. 363-370.
[15] N. Sahiti, F. Durst, A. Dewan, Strategy for selection of elements for heat transfer enhancement, Int. J. Heat Mass Transfer, vol. 49(2006), pp. 3392-3400.
[16] A. Morales-Fuentes, Y.A. Loredo-Saenz, Identifying the geometry parameters and fin type that lead to enhanced performance in tube-and-fin geometries, Appl. Therm. Eng., vol. 131(2018), pp. 793-805.
[17] Y. Jin, G.H. Tang, Y.L. He and W.Q. Tao, Parametric study and field synergy principle analysis of H-type finned tube bank with 10 rows, Int. J. Heat Mass Transfer, vol. 60(2013), pp. 241-251.
[18] Heng Wang, Ying-wen Liu, Peng Yang, Ren-jie Wu, Ya-ling He, Parametric study and optimization of H-type finned tube heat exchangers using Taguchi method, Appl. Therm. Eng., vol. 103(2016), pp. 128-138.
[19] J.Y. Yun and K.S. Lee, Influence of design parameters on the heat transfer and flow friction characteristics of the heat transfer with slit fins, Int. J. Heat Mass Transfer, vol. 43(2000), pp. 2529-2539.
[20] L. Ma, F. Li and J. Liu, Experimental research on H-type elliptical finned tubes in low temperature boiler gas flue, Int. J. Simulation: Systems, Sci. and Tech., 2016.
[21] Xiuzhen Li, Dongsheng Zhu, Jinfei Sun, Xun Mo, Yingde Yin, Air side heat transfer and pressure drop of H type fin and tube bundles with in line layouts, Experimental Thermal and Fluid Science, vol. 96(2018), pp. 146-153.
[22] Peng Sun, Huazhen Yang, Bin Zheng, Yongqi Liu, Yueyue Shi, Zongli Li, Heat transfer trait simulation of H finned tube in ventilation methane oxidation steam generator for hydrogen production, Int. J. Hydrogen Energy, vol. 44(11)(2019), pp. 5564-5572.
[23] Leandro O. Salviano, Daniel J. Dezan, Jurandir I. Yanagihara, Optimization of winglet-type vortex generator positions and angles in plate-fin compact heat exchanger: Response Surface Methodology and Direct Optimization, Int. J. Heat Mass Transfer, vol. 82(2015), pp. 373-387.
[24] Song-Zhen Tang, Fei-Long Wang, Ya-Ling He, Yang Yu, Zi-Xiang Tong, Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm, Applied Energy, vol. 239(2019), pp. 908-918.
[25] Pradhyumn Bhale, Mrinal Kaushik, Jane-Sunn Liaw and Chi-Chuan Wang, Airside Performance of H-Type Finned Tube Banks with Surface Modifications, Energies 2019, 12(4), 584.
[26] A.N. Tikhonov and V.Y. Arsenin, Solution of Ill-posed Problems, V.H. Winston & Sons, Washington, DC, 1977.
[27] O.M. Alifanov, Inverse Heat Transfer Problem, Springer-Verlag, Berlin, 1994.
[28] A. Bejan, Heat Transfer, John Wiley & Sons, Inc., pp. 53-62, 1993.
[29] 張耀倫,H形單管板鰭管式熱交換器的混合對流特性之研究,國立成功大學機械工程學系,碩士論文,2018。
[30] 林子祥,預測板鰭式熱沉於各種矩形外殼內之熱傳特性,國立成功大學機械工程學系,碩士論文,2015。