簡易檢索 / 詳目顯示

研究生: 周心宇
Chou, Hsin-Yu
論文名稱: 具溝槽之板鰭管式熱交換器的混合對流熱傳研究
Study on Mixed Convection Heat Transfer of Grooved Plate Finned Tube Heat Exchanger
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 98
中文關鍵詞: 逆算法CFD模擬板鰭管式熱交換器垂直抽風混合對流
外文關鍵詞: Inverse method, CFD, Mixed convection, U-type heat convection
相關次數: 點閱:57下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以三維CFD軟體搭配實驗及逆向方法研究垂直抽風板鰭管式熱交換器於矩形流道的混合對流熱流特性。探討具溝槽鰭片於不同入口流速及鰭片間距之影響,因此設計方形鰭片、雙溝槽H型鰭片及單溝槽U型鰭片。由於流體流經鰭片時會產生複雜的三維流動,鰭片上不同區域熱傳系數不盡相同,故將鰭片切割為八個子區域,搭配逆向方法及最小平方法快速找尋各個子區域之熱傳系數預估值,並以此計算鰭片表面之Q及h̅預估值。另一方面,本研究使用CFD軟體模擬取得熱流特性結果及各種後處理視圖,利用實驗數據及逆向方法之Q及h̅預估值驗證紊流模式選用及網格劃分之適當性。結果指出,垂直抽風板鰭管式熱交換器於入口流速為1m/s ~ 5m/s時,RNG k-ε為最適當的流動模式;入口流速對具溝槽鰭片之熱傳增幅有決定性之影響;U型鰭片相較H型鰭片有較佳的熱傳表現。

    This study uses three-dimensional computational fluid dynamics(CFD) numerical simulation along with inverse method and experimental temperature data to investigate the mixed convection heat transfer of grooved plate finned tube heat exchanger in rectangular tunnel. The effects of inlet velocity Va and fin spacing S are investigated. Three kinds of fins including plate fin, H-type fin and U-type fin are designed for this study. The inverse method in conjunction with finite difference method and least-squares scheme are applied to predict the heat transfer characteristics. On the other hand, the temperature contour, streamline and heat characteristics are determined by CFD. In order to obtain more accurate simulation results, the selection of flow models and mesh system must be tested by the experimental and inverse results. It is found that RNG k-ε is the most suitable flow model for present work. U-type fin has better performance in heat transfer than H-type fin.

    目錄 摘要 II 目錄 X 表目錄 XII 圖目錄 XV 符號說明 XVIII 第 1 章 緒論 1 1-1 研究背景 1 1-2 文獻介紹 3 1-3 研究方法與目的 7 第 2 章 逆向方法之理論推倒及建構過程 9 2-1 簡介 9 2-2 物理模型與對應邊界 10 2-3 鰭片之差分方程式 14 2-4 逆向熱傳導問題 18 第 3 章 實驗操作 21 3-1 簡介 21 3-2 實驗設備 25 3-3 實驗步驟 30 第 4 章 三維CFD模擬分析 33 4-1 簡介 33 4-2 假設條件 34 4-3 邊界條件 36 4-4 流動模式 39 4-5 CFD模擬之測試及驗證 40 4-5-1 流動模式測試 42 4-5-2 網格選用測試 50 4-5-3 實驗及逆向方法結果與CFD模擬驗證 56 4-6 固定條件之模擬分析 67 第 5 章 結果與討論 69 5-1 簡介 69 5-2 入口速度變化的影響 70 5-3 鰭片間距變化的影響 72 5-4 各種鰭片h̅b及Q之比較 72 5-5 各種鰭片之壓降比較 74 第 6 章 結論與建議 92 6-1 結論 92 6-2 未來展望與建議 94 參考文獻 96   表目錄 表 3 1不鏽鋼AISI304物性 25 表 3 2鰭片試件之尺寸 26 表 3 3工作風扇GF-B205H1之數據 27 表 3 4本文實驗參數設定 30 表 4 1不鏽鋼AISI304物性 36 表 4 2對應U型鰭片L = 100 mm、S = 15 mm、Va = 1 m/s、T0 =321.94 K及Tꝏ = 298.83 K,不同紊流模式數值結果與量測溫度及逆算結果的比較 45 表 4 3對應U型鰭片L = 100 mm、S = 15 mm、Va = 3 m/s、T0 =314.1 K及Tꝏ = 297.73 K,不同紊流模式數值結果與量測溫度及逆算結果的比較 46 表 4 4對應U型鰭片L = 100 mm、S = 15 mm、Va = 5 m/s、T0 =312.66 K及Tꝏ = 297.94 K,不同紊流模式數值結果與量測溫度及逆算結果的比較 47 表 4 5對應L = 100 mm、S = 5 mm、Va = 5m/s、T0 = 311.45 K、 Tꝏ = 297.48 K、Nzf = 3及 Nza = 6,Nx及Ny值對U型鰭片之數值結果比較 54 表 4 6對應L = 100 mm、S = 5 mm、Va = 5 m/s、T0 = 311.45 K、 Tꝏ = 297.48 K、Nx = 35、Ny = 37及Nzf = 3,Nza值對U型鰭片之數值結果比較 55 表 4 7對應方形鰭片L= 100mm、Va= 1 m/s於不同S,實驗及逆算結果與數值結果之比較 58 表 4 8對應方形鰭片L= 100mm、Va= 3 m/s於不同S,實驗及逆算結果與數值結果之比較 59 表 4 9對應方形鰭片L= 100mm、Va= 5 m/s於不同S,實驗及逆算結果與數值結果之比較 60 表 4 10對應H型鰭片L= 100mm、Va= 1 m/s於不同S,實驗及逆算結果與數值結果之比較 61 表 4 11對應H型鰭片L= 100mm、Va= 3 m/s於不同S,實驗及逆算結果與數值結果之比較 62 表 4 12對應H型鰭片L= 100mm、Va= 5 m/s於不同S,實驗及逆算結果與數值結果之比較 63 表 4 13對應U型鰭片L= 100mm、Va= 1 m/s於不同S,實驗及逆算結果與數值結果之比較 64 表 4 14對應U型鰭片L= 100mm、Va= 3 m/s於不同S,實驗及逆算結果與數值結果之比較 65 表 4 15對應U型鰭片L= 100mm、Va= 5 m/s於不同S,實驗及逆算結果與數值結果之比較 66 表 4 16 對應U型鰭片Va =1、S = 5及 Tꝏ = 298.32 K之不同 68 表 5 1 對應不同參數,方形鰭片之逆算結果與數值結果的比較, T0 = 325 K、Tꝏ = 298K 76 表 5 2 對應不同參數,H型鰭片之逆算結果與數值結果的比較, T0 = 325 K、Tꝏ = 298K 77 表 5 3 對應不同參數,U型鰭片之逆算結果與數值結果的比較, T0 = 325 K、Tꝏ = 298K 78   圖目錄 圖 1 1 研究流程圖 8 圖 2 1鰭片幾何形狀與參數示意圖 13 圖 2 2 U型鰭片邊界編號對照 13 圖 2 3 子區域及溫度量測點式意圖 15 圖 2 4 U型鰭片差分格點示意圖 17 圖 3 1板鰭管式熱交換器與流道之實驗裝置 22 圖 3 2板鰭管式熱交換器與流道之上視圖 23 圖 3 3模擬板鰭管式熱交換器之實驗配置圖與設備名稱 24 圖 3 4溫度擷取設備產品實體圖 29 圖 3 5風速計AM-4202產品實體 30 圖 4 1板鰭管式熱交換器於矩形流道之半對稱模型 38 圖 4 2板鰭管式熱交換器於矩形流道之建模與邊界條件 39 圖 4 3熱流模擬軟體ANSYS Icepak 15.0操作流程 41 圖 4 4 對應U型鰭片L=100mm及S=15mm,在不同紊流模式下,逆向方法結果與數值結果之h̅值隨V變化的比較 48 圖 4 5 對應H型鰭片L=100mm及S=15mm,在不同紊流模式下,逆向方法結果與數值結果之h̅值隨V變化的比較 48 圖 4 6對應方形鰭片L=100mm及S=15mm,在不同紊流模式下,逆向方法結果與數值結果之h̅值隨V變化的比較 49 圖 4 7 對應U型鰭片L=100mm及V=1 m/s,在不同紊流模式下,逆向方法結果與數值結果之h̅值隨S變化的比較 49 圖 4 8 在不同截面之U型鰭片與外部流場的網格示意圖 53 圖 5 1 各種鰭片在L = 100 mm及不同S,h̅隨Va的變化 79 圖 5 2 各種鰭片在L = 100 mm及不同Va,h̅隨S的變化 80 圖 5 3 方形鰭片在L = 100 mm、S = 15 mm及不同Va,於z = 7.5mm流線圖 81 圖 5 4 H型鰭片在L = 100 mm、S = 15 mm及不同Va,於z = 7.5mm流線圖 82 圖 5 5 U型鰭片在L = 100 mm、S = 15 mm及不同Va,於z = 7.5mm流線圖 83 圖 5 6 對應不同鰭片在L = 100 mm、S = 15 mm及Va=5m/s,z = 1mm之速度流線圖 84 圖 5 7 方形鰭片在L = 100 mm、S = 15 mm及不同Va,於鰭片表面之溫度分布圖 85 圖 5 8 H型鰭片在L = 100 mm、S = 15 mm及不同Va,於鰭片表面之溫度分布圖 86 圖 5 9 U型鰭片在L = 100 mm、S = 15 mm及不同Va,於鰭片表面之溫度分布圖 87 圖 5 10 U型鰭片在L = 100 mm、Va = 1 m/s及不同S,於鰭片表面之溫度分布圖 88 圖 5 11 各種鰭片在L = 100 mm及不同S,h̅b隨Va的變化 89 圖 5 12 各種鰭片在L = 100 mm及不同S,Q隨Va的變化 90 圖 5 13 各種鰭片在L = 100 mm及不同Va, 隨S的變化 91

    [1] F.E.M. Saboya and E.M. Sparrow, Local and average transfer coefficients for one-row plate fin and tube heat exchanger configurations, ASME J. Heat Transfer, vol. 96(1974), pp. 265-272.
    [2] F.E.M. Saboya and E.M. Sparrow, Transfer characteristics of two-row plate fin and tube heat exchanger configurations, Int. J. Heat Mass Transfer, vol. 19(1976), pp. 41-49.
    [3] E.C. Rosman, P. Carajilescov and F.E.M. Saboya, Performance of one- and two-row tube and plate fin heat exchanger, ASME J. Heat Transfer, vol. 106(1984), pp. 627-632.
    [4] C.C. Wang and K.Y. Chi, Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, Part I: New experimental data, Int. J. Heat Mass Transfer, vol. 43(2000), pp. 2681-2691.
    [5] C.C. Wang and K.Y. Chi, Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, Part II: Correlation, Int. J. Heat Mass Transfer, vol. 43(2000), pp. 1651-1659.
    [6] H.T. Chen and W.L. Hsu, Estimation of heat-transfer characteristics on a vertical annular circular fin of finned-tube heat exchangers in forced convection, Int. J. Heat Mass Transfer, vol. 51(2008), pp.1920-1932.
    [7] H.T. Chen, J.C. Chou and H.C. Wang, Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings, Int. J. Heat Mass Transfer, vol. 50(2007), pp. 45-57.
    [8] B. Watel, S. Harmand and B. Desmet, Influence of flow velocity and fin spacing on the forced convective heat transfer from an annular-finned tube, JSME Int. J., Ser. B, vol. 42(1999), pp. 56-64.
    [9] C.W. Lu, J.M. Huang, W.C. Nien and C.C. Wang, A numerical investigation of the geometric effects on the performance of plate finned-tube heat exchanger, Energy Conversion Management, vol. 52(2011), pp. 1638-1643.
    [10] M.S. Mon and U. Gross, Numerical study of fin-spacing effects in annular-finned tube heat exchangers, Int. J. Heat Mass Transfer, vol. 47(2004), pp. 1953-1964.
    [11] A. Kumar, J.B. Joshi, A.K. Nayak and P.K. Vijayan, 3D CFD simulations of air cooled condenser-III: Thermal–hydraulic characteristics and design optimization under forced convection conditions, Int. J. Heat Mass Transfer, vol. 93(2016), pp. 1227-1247.
    [12] H.T. Chen, Y.S. Lin, P.C. Chen and J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters, Int. J. Heat Mass Transfer, vol. 100(2016), pp. 320-331.
    [13] H.T. Chen, Y.J. Chiu, C.S. Liu, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transfer, vol. 109(2017), pp. 378-392.
    [14] A.M. Gonzalez, M. Vaz Jr., P.S.B. Zdanski, A hybrid numerical-experimental analysis of heat transfer by forced convection in plate-finned heat exchangers, Appl. Therm. Eng., vol. 148(2019), pp. 363-370.
    [15] N. Sahiti, F. Durst, A. Dewan, Strategy for selection of elements for heat transfer enhancement, Int. J. Heat Mass Transfer, vol. 49(2006), pp. 3392-3400.
    [16] A. Morales-Fuentes, Y.A. Loredo-Saenz, Identifying the geometry parameters and fin type that lead to enhanced performance in tube-and-fin geometries, Appl. Therm. Eng., vol. 131(2018), pp. 793-805.
    [17] Y. Jin, G.H. Tang, Y.L. He and W.Q. Tao, Parametric study and field synergy principle analysis of H-type finned tube bank with 10 rows, Int. J. Heat Mass Transfer, vol. 60(2013), pp. 241-251.
    [18] Heng Wang, Ying-wen Liu, Peng Yang, Ren-jie Wu, Ya-ling He, Parametric study and optimization of H-type finned tube heat exchangers using Taguchi method, Appl. Therm. Eng., vol. 103(2016), pp. 128-138.
    [19] J.Y. Yun and K.S. Lee, Influence of design parameters on the heat transfer and flow friction characteristics of the heat transfer with slit fins, Int. J. Heat Mass Transfer, vol. 43(2000), pp. 2529-2539.
    [20] L. Ma, F. Li and J. Liu, Experimental research on H-type elliptical finned tubes in low temperature boiler gas flue, Int. J. Simulation: Systems, Sci. and Tech., 2016.
    [21] Xiuzhen Li, Dongsheng Zhu, Jinfei Sun, Xun Mo, Yingde Yin, Air side heat transfer and pressure drop of H type fin and tube bundles with in line layouts, Experimental Thermal and Fluid Science, vol. 96(2018), pp. 146-153.
    [22] Peng Sun, Huazhen Yang, Bin Zheng, Yongqi Liu, Yueyue Shi, Zongli Li, Heat transfer trait simulation of H finned tube in ventilation methane oxidation steam generator for hydrogen production, Int. J. Hydrogen Energy, vol. 44(11)(2019), pp. 5564-5572.
    [23] Leandro O. Salviano, Daniel J. Dezan, Jurandir I. Yanagihara, Optimization of winglet-type vortex generator positions and angles in plate-fin compact heat exchanger: Response Surface Methodology and Direct Optimization, Int. J. Heat Mass Transfer, vol. 82(2015), pp. 373-387.
    [24] Song-Zhen Tang, Fei-Long Wang, Ya-Ling He, Yang Yu, Zi-Xiang Tong, Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm, Applied Energy, vol. 239(2019), pp. 908-918.
    [25] Pradhyumn Bhale, Mrinal Kaushik, Jane-Sunn Liaw and Chi-Chuan Wang, Airside Performance of H-Type Finned Tube Banks with Surface Modifications, Energies 2019, 12(4), 584.
    [26] A.N. Tikhonov and V.Y. Arsenin, Solution of Ill-posed Problems, V.H. Winston & Sons, Washington, DC, 1977.
    [27] O.M. Alifanov, Inverse Heat Transfer Problem, Springer-Verlag, Berlin, 1994.
    [28] A. Bejan, Heat Transfer, John Wiley & Sons, Inc., pp. 53-62, 1993.
    [29] 張耀倫,H形單管板鰭管式熱交換器的混合對流特性之研究,國立成功大學機械工程學系,碩士論文,2018。
    [30] 林子祥,預測板鰭式熱沉於各種矩形外殼內之熱傳特性,國立成功大學機械工程學系,碩士論文,2015。

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE