簡易檢索 / 詳目顯示

研究生: 江英良
Chiang, Ying-Liang
論文名稱: 平板大變形理論分析
Large Deformation Theory of Plate
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 67
中文關鍵詞: 大變位平板理論微分再生核近似法非線性理論
外文關鍵詞: Plate theory, Differential Reproducing Kernel Method, Newton-Raphson method
相關次數: 點閱:152下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文內容主要為推導出一套適合分析大變位的平板理論,並配合使用「微分再生核近似法(Differential Reproducing Kernel Approximation Method ,DRKM)」直接處理平板二維偏微分聯立方程組。數值求解時配合Newton-Raphson Method將平板平衡方程式以及邊界條件線性化,利用迭代方式求得平板變形後最終狀態的位置,進而分析變形後的各項力學行為。數值範例分析三種不同型形式的平板問題:懸臂板受純彎矩作用、四邊自由端受彎矩作用與四邊固定端受均佈載重作用,利用本文所得到的數值解與理論解或線性理論之解析解對照比較,探討非線性理論與線性理論的差異性。

    In this paper, form the configurations of the plate before and after deformed, we derive its strains and equilibrium equations under large displacement. Using the coordinate of the middle surface of the plate and its transverse shear strains as the field functions, five nonlinear partial differential equations are established for the system. To solve those nonlinear equations, we adopt the Newton-Raphson method to linearlize the differential equations and using the differential reproducing kernel method to solve the linearlized differential equations. A numerical solution for plate under pure bending is examined with the analytic solution. Furthermore, some numerical solutions for the plate under various loads are comparing with the solutions derived from classic plate theory. The result shows that present theory is useful in analysis of the plate under large displacement.

    摘要 I 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 本文架構 3 第二章 平板大變位理論 5 2.1 平板變形前中平面狀態的描述 5 2.2 變形後平板中平面狀態的描述 6 2.3 平板的平衡方程式 8 2.4 平板之應變關係 12 2.5 平板理論解析架構 15 2.6 邊界條件 19 第三章 微分再生核近似理論 22 3.1 離散的再生核近似(Discrete Reproducing Kernel Approximation) 22 3.2 再生核形狀函數的微分 24 3.3 加權函數與鄰近點的選取 26 第四章 數值分析步驟 28 4.1 Newton-Raphson Method 28 4.2 平衡方程式及邊界條件增量表示式 29 4.3 微分再生核近似法應用於平板大變形理論 32 第五章 數值算例 35 5.1 懸臂板受純彎矩作用 35 5.2 平板四邊自由端受彎矩作用 36 5.3 平板四邊固定端受均佈載重作用 37 第六章 結論 39 參考文獻 57 附錄A 59 附錄B 64 自述 67

    Belytschko, T., Liu, W. K., Brian Moran,Nonlinear Finite Elements for Continua and Structures., John Wiley, Chichester, 2000

    Chia, C.Y., Nonlinear Analysis of Plates., McGraw-Hill International Book Co., New York, 1980.

    Donnell, L. H., Beams,Plates and Shells., McGraw Hill,New York, 1976.

    Fung,Y.C, Foundations of Solid Mechanics.Prentice-Hill, inc., Englewood Cliffs. New Jersey,1965.

    Jones, R.M., Mechanics of composite materials., McGraw-Hill, Washington, 1975.
    Karman, T. V., Festigkeitsprobleme im Mashinenbua, Encykl. Math. Wiss.,vol. 4, no. 4, pp.348-352,1910

    Kirchhoff , G., das Gleichgewicht und die Bewegung einer elastischen Scheibe, Crelles J. Vol.40, p51-p58,1850.

    Love , A.E.H.,A Treatise on the Mathematical Theory of Elastic,Dover Publication,New York,1944.

    Lukasiewicz, Stanislaw, Local Loads in Plates and Shells., Sijthoff & Noordhoff, Alphen an den Rijn, 1979.

    Mindlin , R.D. , Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic Elastic Plates, Transactions of the American Society of Mechanical Engineers, Journal of Applied Mechanics 18,p31-p38,1951.

    Raymond, J. R. , Warren C. Young., Formulas for Stress and Strain., McGraw-Hill, New York, 1975.

    Reismann, H. ,Elastic Plates :Theory and Application. Wiley, New York, 1988

    Timoshenko, S., Theroy of Plates and Shells., McGraw-Hill Book Company,Inc., London,1940.

    Ugural , A.C.:, Stresses in Plates and Shells., McGraw Hill, Boston :WCB, 1999

    Voyiadjis, G.Z. and Karamanlidis, D., Advances in the Theory of Plates and Shells., Elsevier, Amsterdam, 1990

    周政翰, 薄膜應力之有限元素分析與評估, 國立成功大學土木研究所碩士論文,2006.

    下載圖示 校內:立即公開
    校外:2006-07-31公開
    QR CODE