| 研究生: |
柳冠維 Liu, Guan-Wei |
|---|---|
| 論文名稱: |
利用堆積理論改善超微表配比設計方法並探討對其長期績效表現之影響 Using Packing Theory to Improve Microsurfacing Mix Design Procedure and Evaluating its Long Term Performance |
| 指導教授: |
楊士賢
Yang, Shih-Hsien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 乳化瀝青 、超微表 、動態剪力模數 |
| 外文關鍵詞: | Asphalt emulsion, Micro-surfacing, Mix design Direct Dynamic shear Test |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
交通道路是國家的經濟命脈,每個國家政府每年都必須花費大量的資金成本來進行修繕,然而自工業革命以來,地球的自然資源被大量的消耗著,在近三十年裡,為了因應日漸枯竭的資源,歐美及其他許多其他區域開始尋找成本低廉、資源消耗低的材料、工法來降低金錢、資源的消耗並延長道路的使用壽命,而超微表(Microsurfacing)技術也因為這個原因,開始被大量應用。然而過去研究顯示,超微表配比設計方法存在若干不足之處,例如部分配比設計試驗結果之判讀受到操作者的經驗影響,較不客觀,部分試驗參數與方法無法有效連結鋪面主要破壞模式,因此本研究之目的在於改進獲取超微表配比中與其長期績效相關之設計參數之流程,減少試驗次數,幫助工程師更快獲取最佳配比。研究中依據ISSA之配比設計流程建議之骨材粒徑分布範圍(TypeⅡ,TypeⅢ),選取總共五種不同之骨材分布,利用堆積理論(Packing theory)計算其堆積程度(Packing degree),選取三種瀝青油膜厚度(6 microns,8 microns,10 microns),利用負荷輪載重試驗與濕輪磨耗試驗量測超微表之抗車轍與剝脫能力,更進一步利用改良式Leutner剪力試驗儀量測量測超微表之基本材料性質如動態剪力模數與直剪強度,並探討其與超微表抗車轍能力之關聯性。負荷輪車轍載重試驗結果顯示在堆積程度趨近某一定值時(96.23)時,擁有最佳之抗車轍成效,且透過變異數分析發現骨材級配的改變確實是影響抗車轍表現的顯著變因。濕輪磨耗試驗結果顯示超微表試體之短期穩定性(浸水1小時)與長期穩定性(浸水6天)皆受到含油量及骨材級配的顯著影響,但試驗結果本身並未能幫助剔除試驗中的不良配比,只能利用試驗結果進行相對比較。動態剪力試驗結果發現當試體之抗車轍能力與試體彈性部分參數(G^*⁄sinδ)呈正向相關。
The objective of this study is to establish the design parameters that can improve the accuracy of micro-surfacing mix design. Aggregate packing degree was proposed to identify different aggregate gradation. The trial mixes were evaluated using current ISSA simulative performance tests and newly developed dynamic direct shear test. The performance parameter, G*/sin(δ), was also proposed to evaluate mix rutting performance.
The results showed that packing degree can be used as design parameters to help engineer to optimize aggregate gradation in the mix. The best packing degree in this study was 96.23. The performance parameter, G*/sin(δ), correlated well with the results from loaded wheel tracking test. Lastly, a modified asphalt content selection and mix design procedure to optimize micro-surfacing long-term performance were proposed to improve the accuracy and reduce the number of trial mixes.
Andrews, E. M., Smith, R. E., Beatty, C. K., & Button, J. W. (1995). Evaluation of micro-surfacing mixture design procedures and the effects of material variation on the test responses.
Birgisson, B., Darku, D., Roque, R., & Page, G. (2004). THE NEED FOR INDUCING SHEAR INSTABILITY TO OBTAIN RELEVANT PARAMETERS FOR HMA RUT-RESISTANCE (WITH DISCUSSION). Journal of the Association of Asphalt Paving Technologists, 73.
Broughton, B., Lee, S.-J., & Kim, Y.-J. (2012). 30 Years of Microsurfacing: A Review. ISRN Civil Engineering, 2012, 1-7. doi: 10.5402/2012/279643
Caltrans. (2009). MTAG Volume I Flexible Pavement Preservation 2nd Edition.
Campen, W., Smith, J., Erickson, L., & Mertz, L. (1959). The relationships between voids, surface area, film thickness and stability in bituminous paving mixtures. Paper presented at the Proceedings of the Association of Asphalt Paving Technologists.
Erwin, T., & Tighe, S. (2008). Safety Effect of Preventive Maintenance: A Case Study of Microsurfacing. Transportation Research Record: Journal of the Transportation Research Board, 2044, 79-85. doi: 10.3141/2044-09
Feret, R. (1892). Sur la compacité des mortiers hydrauliques.
FUGRO-BRE, I. (2002). Slurry Micro-Surface Mix Design Procedure Phase II (C. D. o. T. D. o. P. a. Contracts, Trans.).
Furnas, C. C. (1929). Flow of gases through beds of broken solids (Vol. 300): US Government Printing Office.
Goltermann, P., Johansen, V., & Palbøl, L. (1997). Packing of Aggregates: An Alternative Tool to Determine the optimal Aggregate Mix. ACI Materials Journal, 435-442.
James, A. (2006). Overview of asphalt emulsion. transportation research circular E-C102, 1-6.
Johannes, P. (2014). Development of an Improved Mixture Design Framework for Slurry Seals and Micro-Surfacing Treatments. UNIVERSITY OF WISCONSIN – MADISON.
Kadrmas, A., & SemMaterials, L. (2006). Emulsion Test Methods. Asphalt Emulsion Technology, 26.
Li, S., Liu, Z. H., & Chen, X. C. (2011). Application Technology of Thin Asphalt Concrete Overlay on Old Pavement. Paper presented at the Advanced Materials Research.
Lira, B., Jelagin, D., & Birgisson, B. (2012). Gradation-based framework for asphalt mixture. Materials and structures, 46(8), 1401-1414.
Lira, B., Jelagin, D., & Birgisson, B. (2014). Binder distribution model for asphalt mixtures based on packing of the primary structure. International Journal of Pavement Engineering, 16(2), 144-156. doi: 10.1080/10298436.2014.937713
Mayer, D. (1999). Surfaces, Intersurfaces, And Colloids: Principles and Applications (Second ed.): John Wiley & Sons, Inc, New York.
Nukunya, B., Roque, R., Tia, M., & Birgisson, B. (2001). EVALUATION OF VMA AND OTHER VOLUMETRIC PROPERTIES AS CRITERIA FOR THE DESIGN AND ACCEPTANCE OF SUPERPAVE MIXTURES (WITH DISCUSSION AND CLOSURE). Journal of the Association of Asphalt Paving Technologists, 70.
Poulsen, A. (1909). Cement in seawater: report on the trials, commenced in 1896 on the reco mmendation of the society of Scaninavian Portland cement manufacturers.
Robati, M. (2012). Evaluation of a modification of current micro-surfacing mix design procedures. École de technologie supérieure.
Robati, M. (2014a). Evaluation and improvement of micro-surfacing mix design method and modelling of asphalt emulsion mastic in terms of filler-emulsion interaction. École de technologie supérieure.
Robati, M. (2014b). EVALUATION AND IMPROVEMENT OF MICRO-SURFACING MIX
DESIGN METHOD AND MODELLING OF ASPHALT EMULSION
MASTIC IN TERMS OF FILLER-EMULSION INTERACTION. {É}cole de technologie sup{é}rieure.
Robati, M., Carter, A., & Perraton, D. (2015). Evaluation of a modification of current microsurfacing mix design procedures. Canadian journal of civil engineering, 42(5), 319-328.
Toufar, W., Born, M., & Klose, E. (1976). Beitrag zur Optimierung der Packungsdichte polydisperser körniger Systeme. Freiberger Forschungsheft, 558(29-44), 201.
Toufar, W., Klose, E., & Born, M. (1977). Berechnung der packungsdichte von korngemischen. Aufbereitung-Technik, 11, 603-608.
Vavrik, W. R. (2000). Asphalt Mixture Design Concepts To Develop Aggregate Interlock. University ofIllinois at Urbana-Champaign.
Xiao, Y. (2013). Towards a performance evaluation method for durable and sustainable thin surfacings: TU Delft, Delft University of Technology.
Zhang, Y., Birgisson, B., & Lytton, R. L. (2014). Weak Form Equation-Based Finite Element Modeling of Viscoelastic Asphalt Mixtures.
周煥焄. (2015). 探討與超薄鋪面技術成效表現相關之力學特性. 國立成功大學.
陳一昌, & 周家蓓. (2005). 養護策略的轉變-鋪面保育與公路資產管理. 第十三屆鋪面工程學術研討會論文.
鄭如岩. (2010). 微表處混合料路用性能室內試驗研究. 長沙理工大學.
中國大陸交通部公路科學研究(2006)。微表處及稀漿封層指南。中國:人民交
通出版社。
虎增福(2006)。乳化瀝青稀漿封層技術。中國:人民交通出版社。
黃忠信(2003)。土木材料。台北:三民書局
校內:2021-09-01公開