| 研究生: |
劉哲豪 Liu, Che-Hao |
|---|---|
| 論文名稱: |
擴展Zee模型中活性及惰性微中子質量 Radiative masses of active and sterile neutrinos in an extension of the Zee model |
| 指導教授: |
陳泉宏
Chwn, Chuan-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 活性微中子 、惰性微中子 、Zee模 型 |
| 外文關鍵詞: | active neutrino, sterile neutrino, Zee model |
| 相關次數: | 點閱:67 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們將介紹Zee模型的定理,以及如何擴展Zee模型來解釋活性微中子和惰性微中子的
質量,並在擴展Zee模型中掃描參數。然後,檢查該模型是否能夠符合短基線惰性微中
子實驗和全球活性微中子實驗的數據。此外,我們將討論對模型係數施加的限制,這
些限制來自Br(li → lj γ)的限制,它們對模型的係數提供了強大的約束。此外,我們將
在本文中探討這些係數之間的關係。擴展Zee模型提供了一個可行的機制,成功地符合
實驗數據,並為3+1味的微中子提供質量解。
We will present the theorem of Zee Model and how to extend Zee Model to explain the mass of active neutrinos and sterile neutrinos, and scan the parameters in Extended Zee Model. Then check if this model can fit the data of short baseline sterile neutrino experiments and global active neutrino experiments. Additionally, we will discuss the constraints imposed by the limits on Br(li → ljγ), which provide strong restrictions on the model’s coefficients. Furthermore, we will explore the relationships among these coefficients in this article. The Extended Zee Model offers a viable mechanism that successfully accommodates the experimental data and provides mass solutions for 3+1 flavor neutrinos.
[1] Tomohiro Abe, Junji Hisano, Teppei Kitahara, Kohsaku Tobioka, Gauge invariant
Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models,
Journal of High Energy Physics, Volume 106, Year 2014;
[2] A. Aguilar-Arevalo et al., Evidence for Neutrino Oscillations from the Observation of νe Appearance in a νµ Beam, Phys. Rev. D, Volume 64, 112007, Year 2001;
[3]A. Aguilar-Arevalo et al., Event Excess in the MiniBooNE Search for νµ → νe
Oscillations, Phys.Rev.Lett., Volume 105, 181801, Year 2010;
[4] A. Aguilar-Arevalo et al., MiniBooNE and MicroBooNE Combined Fit to a 3+1
Sterile Neutrino Scenario, Phys. Rev. Lett., Volume 129, 201801, Year 2022;
[5] Guido Altarelli and Ferruccio Feruglio. Models of neutrino masses and mixings. New J.Phys., Volume 6, 106, Year 2004;
[6] D. Aristizabal Sierra and Diego Restrepo. Leptonic Charged Higgs Decays in the Zee Model, Journal of High Energy Physics, Volume 2006, 036, Year 2006;
[7] C. Athanassopoulos et al., The Liquid Scintillator Neutrino Detector and LAMPF
Neutrino Source, Nucl.Instrum.Meth.A388, Page 149-172, Year 1997;
[8] David Bailin, Alexander Love, Introduction To Gauge Field Theory, Taylor and
Francis Group, Published in Great Britain, Page 75-85, Year 1993;
[9] A. M. Baldini et al., Search for the lepton flavour violating decay µ+ → e+γ with the full dataset of the MEG experiment, The European Physical Journal C, Volume 76, 434, Year 2016;
[10] S.M. Bilenky, Neutrino. History of a unique particle, The European Physical
Journal H , volume 38, Pages 345–404 , Year 2013;
[11] S.M. Bilenky, C. Giunti, Neutrinoless Double-Beta Decay: a Probe of Physics
Beyond the Standard Model, Int.J.Mod.Phys. A, Volume 30, 153001, Year 2015;
[12] F. Bonnet, M. Hirsch, T. Ota, and W. Winter, Systematic study of the d=5
Weinberg operator at one-loop order, Journal of High Energy Physics, Volume 2012, Issue 7, 153 , Year 2012;
[13] G. C. Branco et al., Phys. Rept., Volume 516, Issue 1-2, Year 2012;
[14] Juli´an Calle, Diego Restrepo, Oscar Zapata, Phenomenology of the Zee model for ´ Dirac neutrinos and general neutrino interactions, Phys. Rev. D, Volume 104, 015032, Year 2021;
[15] Ta-Pei Cheng and Ling-Fong Li., Gauge theory of elementary particle physics.,
Oxford University Press, Year 2000;
[16] T. P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) ×
U(1) models of electroweak interactions, Phys. Rev. D, Volume 22, Page 2860–2868,
Year 1980;
[17] Y. Cheng, X.-G. He, Z.-L. Huang and M.-W. Li, Type-II Seesaw Triplet Scalar and
Its VEV Effects on Neutrino Trident Scattering and W mass, Physics Lett. B, Volume
831, 137218, Year 2022;
[18] Sacha Davidson, Howard E. Haber, Basis-independent methods for the
two-Higgs-doublet model, Phys. Rev. D, Volume 72, 035004, Year 2005;
[19] S. Dell’Oro, S. Marcocci, M. Viel, F. Vissani, Neutrinoless double beta decay: 2015 review, Advances in High Energy Physics, Volume 2016, 2162659, Year 2016;
[20] A. Djouadi, The anatomy of electroweak symmetry breaking. Tome II: The Higgs 48 bosons in the Minimal Supersymmetric Model, Phys. Rep., Volume 459, Year 2008;
[21] M. Doi, T. Kotani and E. Takasugi, Double Beta Decay and Majorana Neutrino,
Progress of Theoretical Physics Supplement, Volume 83, Year 1985;
[22] Pablo Escribano, Mario Reig, Avelino Vicente, Generalizing the Scotogenic model, Journal of High Energy Physics, Volume 2020, 097, Year 2020;
[23] Y. Fukuda et al, Evidence for oscillation of atmospheric neutrinos, Phys.Rev.Lett., Volume 81, Page 1562-1567, Year 1998;
[24] S. Gariazzo, C. Giunti, M. Laveder, and Y.F. Lie., Updated Global 3+1 Analysis of
Short-BaseLine Neutrino Oscillations, Journal of High Energy Physics, Volume 2017,
135, Year 2017;
[25] Alexandra Gaviria, Robinson Longas, Andr´es Rivera, Lepton dark matter portal in the inert Zee model, International Journal of Modern Physics A, Volume 35, 31,
2050190, Year 2020;
[26] M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf.Proc.C 790927, Page 315-321, Year 1979;
[27] S.L. Glashow, The Future of Elementary Particle Physics, NATO Adv.Study Inst.
Ser. B Phys. 59, 687, Year 1980;
[28] V. N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys.
Lett., Volume 28B, Page 493, Year 1969;
[29] J. F. Gunion and H. E. Haber, CP-conserving two-Higgs-doublet model: The
Approach to the decoupling limit, Phys. Rev. D, Volume 67, 075019, Year 2003;
[30] K. Hasegawa, C.S. Lim, and K. Ogure. Escape from washing out of baryon number in a two zero texture general Zee model compatible with the LMA-MSW solution. Phys.Rev., D, Volume 68, 053006, Year 2003;
[31] Julian Heeck, Interpretation of lepton flavor violation, Phys. Rev. D, Volume 95,
015022, 2017;
[32] P. Hernandez, Neutrino physics, CERN Yellow Report CERN, 2010-001, Page
229-278, Year 2010;
[33] Juan Herrero-Garc´ıa, Tommy Ohlsson, Stella Riad, Jens Wir´en, Full parameter scan of the Zee model: exploring Higgs lepton flavor violation, Journal of High Energy Physics, Volume 2017, 130, Year 2017;
[34] Alexander Himmel, New Limits on Sterile Neutrino Mixing with Atmospheric
Neutrinos, Phys.Procedia, Volume 61, Pages 612–618, Year 2015;
[35] Ch. Kraus et al., Final Results from phase II of the Mainz Neutrino Mass Search in Tritium β Decay, Eur.Phys.J.C40, Page 447-468, Year 2005;
[36] D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M.R. Nolta, et al., Seven-Year
Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and
WMAP-Derived Parameters, The Astrophysical Journal Supplement Series, Volume 192, 16, Year 2011;
[37] David Lhuillier, STEREO neutrino spectrum of 235U fission rejects sterile neutrino hypothesis, Nature, Volume 613, pages 257–261, Year 2023;
[38] Robinson Longas, Dilia Portillo, Diego Restrepo, and Oscar Zapata., The inert Zee model, Journal of High Energy Physics, Volume 2016, 162, Year 2016;
[39] Pedro A. N. Machado, Neutrino Properties and Interactions, FERMILAB PUB,
volume 22-486-T, Year 2022;
[40] E. Ma, Pathways to Naturally Small Neutrino Masses, Phys. Rev. Lett., Volume 81, Page 1171-1174, Year 1998;
[41] Ernest Ma, Verifiable Radiative Seesaw Mechanism of Neutrino Mass and Dark
Matter, Phys. Rev. D, Volume 73, 077301, Year 2006;
[42] Z. Maki, M. Nakagawa, and S. Sakata. Remarks on the unified model of elementary particles. Prog. Theor. Phys., Volume 28,Page 870-880, Year 1962;
[43] S. Mandal, O. G. Miranda, G. S. Garcia, J. W. F. Valle and X.-J. Xu, Towards
deconstructing the simplest seesaw mechanism, Phys. Rev. D, Volume 105, 095020,
Year 2022;
[44] R.N. Mohapatra and G. Senjanovi´c, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D, Volume 23, 165, Year 1981;
[45] C. Patrignani et al., Review of Particle Physics, Chinese Phys. C, Volume 40, 10,
Year 2016;
[46] P. F. de Salas et al., 2020 Global reassessment of the neutrino oscillation picture,
Journal of High Energy Physics, Volume 2021, 71, Year 2021;
[47] Fumihiko Suekane, Neutrino Oscillations A Practical Guide to Basics and
Applications, Springer, Year 2015;
[48] Hiroaki Sugiyama, Radiative Neutrino Mass Models, Higgs as a Probe of New
Physics 2015, Toyama, Japan,Page 11-15, Year 2015;
[49] J.D. Vergados, H. Ejiri, F. Simkovic, Neutrinoless double beta decay and neutrino
mass, Int. J. Mod. Phys. E, Volume 25, Year 2016;
[51] Edoardo Vitagliano, Javier Redondo, Georg Raffelt, Solar neutrino flux at keV
energies, Journal of Cosmology and Astroparticle Physics, Volume 2017, 12010, Year 2017;
[51] S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys.Rev.Lett., Volume 43, Page 1566–1570 , Year 1979;
[52] L. Wolfenstein, A theoretical pattern for neutrino oscillations, Nucl. Phys.B,
Volume 175, Page 93–96, Year 1980;
[53] T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Progress of
Theoretical Physics, Volume 64, 3, Page 1103-1105, Year 1979;
[54] A. Zee, A theory of lepton number violation and neutrino Majorana masses, Phys. Lett. B, Volume 93, Issue 4, Pages 389-393, Year 1980;