| 研究生: |
吳乾禎 Wu, Chien-Chen |
|---|---|
| 論文名稱: |
單晶矽太陽能電池之表面結構設計與光學計量模型之建立 Dsign of Surface Texture and Quantitation Evaluation of Optic from Single Crystalline Silicon Solar Cell |
| 指導教授: |
林光隆
Lin, Kuang-Lung 林仁輝 Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 金字塔 、表面結構 、單晶矽太陽電池 |
| 外文關鍵詞: | pyramid, Single Crystalline Silicon Solar Cell |
| 相關次數: | 點閱:80 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是針對單晶矽太陽能電池在使用非等向性蝕刻後所形成的表面金字塔結構的模型建立與探討表面結構的抗反射及光能吸收的效率,並研究光在不同入射方向時對表面結構影響,計算出光子的吸收能量及反射的損失情形。本研究理論可分為二部分,一部份為建立出三維的表面金字塔結構的形貌及分佈的情形。此為利用金字塔的幾何特性,在表面上建立出兩不同方向的三角形柱相互重疊比較建構出金字塔結構的形貌,排列出金字塔散落分佈的情形。另一部分為計算在不同方向的光線照射表面後的反射率、照射後產生陰影的比率、光照射表面的比率、反射光能損失及可再吸收光能的情形。此為運用向量的基本理論計算光線行進的方向及最後的位置,瞭解光線行進的路徑後計算其反射率及其影響結果。
在實驗方面,利用非等向性蝕刻方式製作出表面金字塔結構,再與模擬的數據進行比較分析,討論本研究的模型理論的可行性。從實驗與模擬的結果進行探討,當蝕刻後形成的表面金字塔結構越大,分佈密度越密集時,其抗反射效果越好,可再吸收光能的效果也越佳。
此外,我們利用本研究的模型討論光從不同照射角度下照射於表面的反射率、抗反射的效果及可再吸收光能的效率。當光線照射於表面上的角度增加時,光照射的面積與反射率也隨之增加。在光照射的角度越接近90°角垂直時,可再吸收光能的效果是最高的,可達到75%左右。在此時表面接收照射光產生的能量是會最大的。
In the present model, the effect of surface texture in reflection to the anisotropic single crystal silicon is created. The topical subject in the present model is to create model of surface texture from anisotropic single crystal silicon and evaluate reflection effect, including loss reflectance and photonics reabsorptivity . We also evaluated angle-dependent reflection effect. This three-dimension model describe pyramids distribute on the surface texture. We create the model that stand on the geometry property of pyramid. We calculate the reflectivity, shadow occupancy fraction, illuminate occupancy fraction, twice reflection occupancy fraction and loss reflectance for the quantitative evaluation of optic. This quantitative evaluation made use of vector as light motion. By comparing experimental and theoretical values, the reliability of a simulation technique was evaluated. We discover from result that antireflection and reabsorption effect better, when pyramid large and distribute densely. In the angle-dependent reflection, the reflectivity and illuminate occupancy fraction will increase, when illumination angle increase. The reabsorptivity is best to reach 75%, when illumination angle reach 90°.
1 Rath, J. K., “Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications,” Solar Energy Materials & Solar Cells, Vol.76, pp.431, 2003
2 Carlson, D. E. and Wronski, C. R., “Amorphous silicon solar cell,” Applied Physics Letters, Vol.28, pp.671, 1976.
3 黃建昇,“結晶矽太陽電池發展現況”, 工業材料雜誌 vol. 203, 2003.
4 Fang, P. H., Ephrath, L., and Nowak, W. B., “Polycrystalline silicon films on
aluminum sheets for solar cell application,” Applied Physics Letters, Vol.25,
pp.583, 1974.
5 Morisaki, H., Watanabe, T., Iwase, M., and Yazawa, K., “Photoelectrolysis of water with TiO2-covered solar-cell electrodes,” Applied Physics Letters, Vol.29, pp.338, 1976.
6 楊昌中,能源領域中的奈米科技研究,工業研究院 能源與環境研究所,中華民國95 年12 月26 日
7 吳財福,張健軒,陳裕愷,太陽能供電與照明系統綜論,全華科技圖書股份有限公司,2000
8 Lin, J. Y., Hwang, H. L. and Sun, C. Y., ”Photovoltaic improvement of single-crystalline Si space solar cell,” National Electron Devices and Materials Symposium, pp.36, 1995.
9 Zhao, J., Wang, A. , Green, M. A., “24% efficient PERL structure silicon solar
Cell,“ IEEE, Vol.91, pp.333, 1990.
10 Zhao, J., Wang, A., Green, M. A. and Wenham, S. R., ”Improvements in silicon
solar cell performance,” IEEE, Vol.90, pp.339, 1991.
11 Parretta, A., Sarno, A., Tortora, P., Yakubu, H., Maddalena, P., Zhao, J., Wang A., ”Angle dependent reflectance measurement on photovaic materials and solar cells,” Optics Communications, Vol.172, pp.139, 1999.
12 Balenzategui, J.L. and Chenlo, F., “Measurement and analysis of bar and encapsulated silicon solar cells,” Solar Energy Materials & Solar Cells, Vol.86, pp.53, 2004.
13 Yamamoto, K., Yoshimi, M., Tawada, Y., Okamoto, Y., Nakajima, A., “Cost effective and high-performance thin film Si solar cell towards the 21st century,” Solar Energy Materials and Solar Cells, Vol.66, pp.117, 2001.
14 Gangopadhyay, U., Kim, K., Dhungel, S. K., Basu, P. K., Yi, J., ”Low cost texturization of large-area crystalline solar cells using hydrazine mono-hydrate for industrial use,” Renewable Energy, Vol.31, pp.1906, 2006.
15 Yagi, T., Uraoka, Y. and Fuyuki, T., “Ray-trace simulation of light trapping in silicon solarcell with texture structures,” Solar Energy Materials and Solar Cell, Vol.90, pp.2647, 2006.
16 Hecht, E., “Optics”, 4th ed., Addison Wesley Longman, New York, 2002.
17 Bean, K. E., “Anisotropic etching of silicon,” IEEE Trans. Electron Devices, ED-25, pp.1185, 1978.
18 Seidel, H., Csepregi, L., Heuberger, A., and Baumgartel, H., “Anisotropicetching of crystalline silicon in alkaline solution-Part I Orientationdependence and behavior of passivation layer,” Journal of The Electrochemical Society, Vol.137, 11, pp.3612, 1990.
19 Lee, D. B., “Anisotropic etching of silicon ,“ Journal of Applied Physics, Vol.40, pp.4569, 1969.
20 Hesketh, P. J., Ju, C., and Gowda, S., “Surface free energy model of silicon anisotropic Etching,” Journal of The Electrochemical Society, Vol.140,
pp.1080, 1993.
21 Marc, J. M, “Fundamentals of Microfabrication,” 2nd Ed., CRC Press, 2002.
22 Akinwande, T., ”Wet Etching, Massachusetts Institute of Technology.” Lecture 13, Fall Term, 2003.
23 Elwenspoek, M., “The form of etch rate minima in wet chemical anisotropic etching of silicon,” Journal of Micromechanical and Microengineering, Vol. 6, pp.405, 1996.
24 Kendall, D. L., “On etching very narrow grooves in silicon,” Applied Physics Letters, Vol.26, pp.195, 1975.
25 Madou, M., “Fundamentals of microfabrication,” CRC Press, New York, 1997.
26 Thomas, R. T., “Rough surface,” Imperial College Press, 1999.