簡易檢索 / 詳目顯示

研究生: 陳宏明
Chen, Hung-Ming
論文名稱: 量化量子疊加過程與其在量子資訊處理上之應用
Quantifying Quantum Superposition Process and Its Applications for Quantum Information Processing
指導教授: 李哲明
Li, Che-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 74
中文關鍵詞: 量子疊加態量子疊加過程量化量子疊加過程
外文關鍵詞: quantum superposition states, quantum superposition processes, quantifying quantum superposition processes
相關次數: 點閱:90下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在量子力學當中,量子系統的特性能夠藉由不存在於與古典世界當中的量子疊加所展現出來。
    根據量子疊加的原理,它描述了任兩個或多個狀態能夠被疊加成新的狀態; 因此在線性且獨立的基底下其量子態的叠加便概括了其同調在正交基底下產生的能力。
    在本論文裡,我們有別於以往只針對狀態的分析,而是以過程的觀點
    介紹兩種量測量化量子態疊加的創造和保存過程。
    透過我們的工作,物理過程能夠廣泛地被描述其疊加的能力,因此許多在量子資訊處理上的物理系統能夠立即被探討,例如糾纏態製備的後選擇、雙折射晶體中的量子動力學、量子共振腔中原子與場的量子動力學、量子力學投影量測、三個典型的量子噪音通道以及量子電腦中所需的基本量子邏輯運算閘。

    In quantum mechanics, the feature of quantum systems can be demonstrated by quantum superposition that is not present in the classical world.
    According to the superposition principle of quantum mechanics, it describes how any two or more quantum states can be superposed together to form another valid quantum state; The superposition of quantum states therefore generalizes the capability of coherence creation in the orthonormal basis to the ability to superpose states in a normalized and linear independent basis.
    In this thesis, different with the former analysis of quantum states, we introduce two measures to quantify creation and preservation of superposing quantum states from process perspective.
    Through our work, physical process can be characterized such that process can demonstrate superposition capability. Therefore, several physical systems can immediately explored in quantum information processing, such as the post-selection used in entanglement generation, quantum electrodynamics in birefringent crystal, quantum electrodynamics for atom and field in quantum resonator, projective measurement in quantum mechanics, three typical quantum noise channels and the basic quantum logic gates in quantum computer.

    摘要i Abstract ii 誌謝iii Table of Contents iv List of Tables vii List of Figures viii Nomenclature ix Chapter 1. Introduction 1 1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter 2. Fundamentals of Quantum Mechanics 7 2.1. Postulates of quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1. Postulate 1 – The state space of system . . . . . . . . . . . . . . . . 8 2.1.2. Postulate 2 – Quantum time evolution . . . . . . . . . . . . . . . . 9 2.1.3. Postulate 3 – Quantum measurement . . . . . . . . . . . . . . . . . 10 iv 2.1.4. Postulate 4 – Composite system . . . . . . . . . . . . . . . . . . . 12 2.2. The density operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1. General properties of the density operator . . . . . . . . . . . . . . 14 2.2.2. The reduced density operator . . . . . . . . . . . . . . . . . . . . . 17 2.3. Quantum operations formalism . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4. Quantum tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.1. Quantum state tomography . . . . . . . . . . . . . . . . . . . . . . 19 2.4.2. Quantum process tomography . . . . . . . . . . . . . . . . . . . . 20 Chapter 3. Quantifying Superposition Capability 24 3.1. Quantum superposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2. The superposition capability measures . . . . . . . . . . . . . . . . . . . . 25 3.3. Approaches for quantifying superposition capability . . . . . . . . . . . . . 26 3.3.1. Superposition capability composition . . . . . . . . . . . . . . . . . 26 3.3.2. Superposition capability robustness . . . . . . . . . . . . . . . . . 28 3.4. Superposition capability criterion . . . . . . . . . . . . . . . . . . . . . . . 29 3.5. Superposition process capability . . . . . . . . . . . . . . . . . . . . . . . 30 3.5.1. Superposition creation capability . . . . . . . . . . . . . . . . . . . 30 3.5.2. Superposition preservation capability . . . . . . . . . . . . . . . . . 31 Chapter 4. Applications of Quantum Superposition Capability 32 4.1. The fusion of photon pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2. Quantum dynamics in birefringent crystal . . . . . . . . . . . . . . . . . . 35 4.3. Cavity quantum electrodynamics . . . . . . . . . . . . . . . . . . . . . . . 39 4.4. Practical effects of noise on open systems . . . . . . . . . . . . . . . . . . 41 4.5. Processes postulated in quantum mechanics . . . . . . . . . . . . . . . . . 44 4.6. Quantum computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.6.1. Superposition creation capability for experimental quantum operations 47 4.6.2. Superposition preservation capability for experimental quantum operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.6.3. Error correction in quantum computer . . . . . . . . . . . . . . . . 50 4.7. Conversion efficiency from coherence to superposition . . . . . . . . . . . 53 Chapter 5. Summary and Outlook 56 5.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 References 59 Appendix A. The paper submitted for publication 64

    [1] J. P. Dowling and G. J. Milburn, “Quantum technology: the second quantum revolution,”Philosophical Transactions of the Royal Society of London. Series A: Mathematical,
    Physical and Engineering Sciences, vol. 361, no. 1809, pp. 1655–1674, 2003.
    [2] D. Deutsch and A. Ekert, “Quantum computation,” Physics World, vol. 11, no. 3, p. 47, 1998.
    [3] R. P. Feynman, “Simulating physics with computers,” International Journal of Theoretical Physics, vol. 21, no. 6-7, pp. 467–488, 1982.
    [4] D. P. DiVincenzo, “Quantum computation,” Science, vol. 270, no. 5234, pp. 255–261, 1995.
    [5] N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, and F. Nori, “Quantum biology,” Nature Physics, vol. 9, no. 1, p. 10, 2013.
    [6] G.-Y. Chen, N. Lambert, C.-M. Li, Y.-N. Chen, and F. Nori, “Rerouting excitation transfers in the fenna-matthews-olson complex,” Physical Review E, vol. 88, no. 3, p. 032120, 2013.
    [7] S. Valleau, R. A. Studer, F. Häse, C. Kreisbeck, R. G. Saer, R. E. Blankenship, E. I.
    Shakhnovich, and A. Aspuru-Guzik, “Absence of selection for quantum coherence in
    the fenna–matthews–olson complex: a combined evolutionary and excitonic study,”
    ACS central science, vol. 3, no. 10, pp. 1086–1095, 2017.
    [8] N. Gisin and R. Thew, “Quantum communication,” Nature Photonics, vol. 1, no. 3,
    p. 165, 2007.
    [9] C. Bennett and P. Shor, “Quantum information theory,” IEEE Transactions on Information
    Theory, vol. 44, no. 6, pp. 2724–2742, 1998.
    [10] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Physical Review
    Letters, vol. 96, no. 1, p. 010401, 2006.
    [11] A. P. French, Vibrations and waves. CRC press, 1971.
    [12] I. G. Main, Vibrations and waves in physics. Cambridge university press, 1993.
    [13] H. J. Pain and R. T. Beyer, “The physics of vibrations and waves,” 1993.
    [14] F. S. Crawford, “Waves, berkeley physics course,” 1968.
    [15] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical
    reality be considered complete?,” Physical Review, vol. 47, no. 10, p. 777, 1935.
    [16] E. Schrödinger, “Discussion of probability relations between separated systems,” Mathematical
    Proceedings of the Cambridge Philosophical Society, vol. 31, no. 4, p. 555–
    563, 1935.
    [17] H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of
    correlations,” Physical Rreview Letters, vol. 88, no. 1, p. 017901, 2001.
    [18] L. Henderson and V. Vedral, “Classical, quantum and total correlations,” Journal of
    Physics A: mathematical and general, vol. 34, no. 35, p. 6899, 2001.
    [19] T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Physical Review
    Letters, vol. 113, no. 14, p. 140401, 2014.
    [20] C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N. Johnston, and G. Adesso, “Robustness
    of coherence: an operational and observable measure of quantum coherence,”
    Physical Review Letters, vol. 116, no. 15, p. 150502, 2016.
    [21] A. Streltsov, G. Adesso, and M. B. Plenio, “Colloquium: Quantum coherence as a resource,”
    Reviews of Modern Physics, vol. 89, no. 4, p. 041003, 2017.
    [22] L.-F. Qiao, A. Streltsov, J. Gao, S. Rana, R.-J. Ren, Z.-Q. Jiao, C.-Q. Hu, X.-Y. Xu,
    C.-Y. Wang, H. Tang, et al., “Entanglement activation from quantum coherence and
    superposition,” Physical Review A, vol. 98, no. 5, p. 052351, 2018.
    [23] K.-D. Wu, Z. Hou, H.-S. Zhong, Y. Yuan, G.-Y. Xiang, C.-F. Li, and G.-C. Guo, “Experimentally
    obtaining maximal coherence via assisted distillation process,” Optica, vol. 4,
    no. 4, pp. 454–459, 2017.
    [24] D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Multiparticle interferometry and
    the superposition principle,” Physics Today, vol. 46, pp. 22–22, 1993.
    [25] D. Eimerl, “Quantum electrodynamics of optical activity in birefringent crystals,” JOSA
    B, vol. 5, no. 7, pp. 1453–1461, 1988.
    [26] J.-M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with
    atoms and photons in a cavity,” Reviews of Modern Physics, vol. 73, no. 3, p. 565, 2001.
    [27] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information.
    Cambridge University Press, 2010.
    [28] International Business Machines Corporation, “IBM Q, The quantum computer.”
    https://www.research.ibm.com/ibm-q/technology/devices/.
    [29] M. B. Plenio and S. S. Virmani, “An introduction to entanglement theory,” in Quantum
    Information and Coherence, pp. 173–209, Springer, 2014.
    [30] K. B. Dana, M. G. Díaz, M. Mejatty, and A. Winter, “Resource theory of coherence:
    Beyond states,” Physical Review A, vol. 95, no. 6, p. 062327, 2017.
    [31] A. Winter and D. Yang, “Operational resource theory of coherence,” Physical Rreview
    Letters, vol. 116, no. 12, p. 120404, 2016.
    [32] A. Streltsov, S. Rana, P. Boes, and J. Eisert, “Structure of the resource theory of quantum
    coherence,” Physical Rreview Letters, vol. 119, no. 14, p. 140402, 2017.
    [33] T. Theurer, N. Killoran, D. Egloff, and M. B. Plenio, “Resource theory of superposition,”
    Physical Review Letters, vol. 119, no. 23, p. 230401, 2017.
    [34] Quantum Process Capability and Its Applications. National Cheng Kung University
    Department of Engineering Science, 2018.
    [35] Characterizing and Verifying Quantum Coherence: from Coherence Preserving Process
    to Tripartite Quantum Discord. National Cheng Kung University Department of
    Engineering Science, 2018.
    [36] R. Shankar, Principles of Quantum Mechanics. Springer US, 1995.
    [37] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien,
    “Quantum computers,” Nature, vol. 464, no. 7285, p. 45, 2010.
    [38] C.-C. Kuo, S.-H. Chen, W.-T. Lee, H.-M. Chen, and C.-M. Lee, “Quantum process
    capability,” arXiv:1811.10307, 2018.
    [39] J.-H. Hsieh, S.-H. Chen, and C.-M. Li, “Quantifying quantum-mechanical processes,”
    Scientific Reports, vol. 7, no. 1, p. 13588, 2017.
    [40] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3–A Matlab software package for
    semidefinite-quadratic-linear programming in Matlab®, version 4.0,” Handbook on
    Semidefinite, Conic and Polynomial Optimization, pp. 715–754, 2012.
    [41] J. Löfberg, “YALMIP: a toolbox for modeling and optimization in MATLAB®,” in
    Computer Aided Control Systems Design, 2004 IEEE International Symposium on,
    pp. 284–289, IEEE, 2004.
    [42] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien,
    “Quantum computers,” Nature, vol. 464, no. 7285, p. 45, 2010.
    [43] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. Raimond, and
    S. Haroche, “Quantum rabi oscillation: A direct test of field quantization in a cavity,”
    Physical Review Letters, vol. 76, no. 11, p. 1800, 1996.
    [44] J. M. Chow, A. D. Córcoles, J. M. Gambetta, C. Rigetti, B. R. Johnson, J. A. Smolin,
    J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen, and M. Steffen, “Simple
    all-microwave entangling gate for fixed-frequency superconducting qubits,” Physical
    Review Letters, vol. 107, p. 080502, Aug 2011.
    [45] F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to optics. Cambridge
    University Press, 2017.
    [46] M. Li, H. Schnablegger, and S. Mann, “Coupled synthesis and self-assembly of
    nanoparticles to give structures with controlled organization,” Nature, vol. 402,
    no. 6760, p. 393, 1999.
    [47] J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental
    test of quantum nonlocality in three-photon greenberger–horne–zeilinger entanglement,”
    Nature, vol. 403, no. 6769, p. 515, 2000.
    [48] D. Bouwmeester, “Bit-flip-error rejection in optical quantum communication,” Physical
    Review A, vol. 63, no. 4, p. 040301, 2001.
    [49] T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for
    two partially entangled photon pairs,” Physical Review A, vol. 64, no. 1, p. 012304,
    2001.
    [50] N. J. Cerf, C. Adami, and P. G. Kwiat, “Optical simulation of quantum logic,” Physical
    Review A, vol. 57, no. 3, p. R1477, 1998.
    [51] B. Bell, A. Clark, M. Tame, M. Halder, J. Fulconis, W. Wadsworth, and J. Rarity, “Experimental
    characterization of photonic fusion using fiber sources,” New Journal of
    Physics, vol. 14, no. 2, p. 023021, 2012.
    [52] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,”
    Physical Review A, vol. 64, p. 052312, Oct 2001.
    [53] N. Gershenfeld and I. L. Chuang, “Quantum computing with molecules,” Scientific
    American, vol. 278, no. 6, pp. 66–71, 1998.
    [54] D. A. Lidar and T. A. Brun, Quantum error correction. Cambridge university press,
    2013.
    [55] R. Blume-Kohout, J. K. Gamble, E. Nielsen, K. Rudinger, J. Mizrahi, K. Fortier, and
    P. Maunz, “Demonstration of qubit operations below a rigorous fault tolerance threshold
    with gate set tomography,” Nature communications, vol. 8, p. 14485, 2017.
    [56] R. Raussendorf and H. J. Briegel, “A one-way quantum computer,” Physical Review
    Letters, vol. 86, no. 22, p. 5188, 2001.
    [57] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E.
    Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum
    coherence in photosynthetic systems,” Nature, vol. 446, no. 7137, p. 782, 2007.
    [58] D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation
    using teleportation and single-qubit operations,” Nature, vol. 402, no. 6760,
    p. 390, 1999.
    [59] A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Physical Review Letters,
    vol. 67, no. 6, p. 661, 1991.
    [60] C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and
    coin tossing.,” Theor. Comput. Sci., vol. 560, no. 12, pp. 7–11, 2014.
    [61] C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Physical
    Review Letters, vol. 68, no. 21, p. 3121, 1992.
    [62] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Reviews of
    Modern Physics, vol. 74, no. 1, p. 145, 2002.
    [63] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and
    M. Peev, “The security of practical quantum key distribution,” Reviews of Modern
    Physics, vol. 81, no. 3, p. 1301, 2009.
    [64] P. W. Shor and J. Preskill, “Simple proof of security of the bb84 quantum key distribution
    protocol,” Physical Review Letters, vol. 85, no. 2, p. 441, 2000.
    [65] J. M. Arrazola and V. Scarani, “Covert quantum communication,” Physical Review
    Letters, vol. 117, no. 25, p. 250503, 2016.
    [66] E. Chitambar, A. Streltsov, S. Rana, M. Bera, G. Adesso, and M. Lewenstein, “Assisted
    distillation of quantum coherence,” Physical Review Letters, vol. 116, no. 7, p. 070402,
    2016.

    下載圖示 校內:2021-08-31公開
    校外:2021-08-31公開
    QR CODE