簡易檢索 / 詳目顯示

研究生: 王文暉
Wnag, Wen-Hui
論文名稱: 基於賽局理論的工業園區廠際熱整合策略
Total-Site Heat Integratio Based on Game Theory
指導教授: 張玨庭
Chang, Chuei-Tin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 60
中文關鍵詞: 熱交換器網路運載模式賽局理論
外文關鍵詞: multi-plant heat integration, transshipment model, game theory, NLP
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統單一工廠內部的熱交換器網路設計,因僅能考慮自身程序流間的搭配,往往
    不能達到工業園區熱整合的最大效益。但若考慮廠際熱交換,則每間工廠必須面對與其
    廠競爭且合作的局面。換言之,工廠間雖可藉由彼此共用公用設施來達到降低自身生產
    成本的目的,但同時也必須最大化自身獲利。而牽涉到此一競合關係是否能穩定存在的
    關鍵,就是廠際熱交換是否能有一個公平且合乎各工廠自身的利益最大化的交易模式。
    因此在本論文中我們引進賽局理論,並搭配運載模式,設法為廠際熱交換器網路設計問
    題尋找最佳均衡解,進而建構出合理、可行且多贏的廠內及廠際熱交換網路。

    Since, in a conventional heat exchanger network design, only the hot and cold streams
    within a single process can be matched, the maximum possible benefit of multi-plant heat
    integration in an industrial park may not be realizable with this approach. If inter-plant heat
    exchanges are permissible, then each plant may have to compete and, at the same time,
    cooperate with the other plants on site. In other words, although it is possible to reduce the
    overall operating cost by sharing heating and cooling utilities, each plant must also try to
    maximize its own financial gain. The presence of a stable equilibrium point in this situation
    hinges upon a suitable price model for energy trading. In this study, the transshipment model
    is modified according to game theory for the purpose of calculating the minimum hot and cold
    utility consumption rates of all plants, the best trade prices and also the corresponding
    inter-plant heat flows. On the basis of these results, a MILP model can then be formulated to
    minimize the total number of matches and to identify the heat duty of every match. Finally,
    two NLP models can be built accordingly to synthesize the optimal heat exchanger network
    and to compute the payments shared by plants involved in every inter-plant heat exchange.

    Table of Contents Chapter 1: Introduction………………………………………………………… 1 1.1 Background…………………………………………………………………. 1 1.2 Literature Review…………………………………………………………… 1 1.3 Research Objective ………………………………………………………… 3 1.4 Organization ………………………………………………………… 3 Chapter 2: Heat Exchange Network…………………………………………… 4 2.1 Heat Integration in a single plant – Sequential Synthesis……………. 4 2.1.1 Minimum utility cost………………………………………………....4 2.1.2 Minimum Utility Cost with Constrained Matches………………… 10 2.1.3 Prediction of Matches for Minimizing the Number of Units……… 12 Chapter 3: Game theory………………………………………………………… 17 3.1 General Game theory………………………………………………………17 3.2 Bargaining theory……………………………………………………… .....18 3.3 Matrix game………………………………………………………………..21 3.4 Elimination of Dominated Strategies…………………………………..23 Chapter 4. Inter-Plant Heat Integration Procedure……………………....25 4.1 Heat integration based on bargaining theory…………………………….......25 4.1.1 Heat flow cascades………………………………………………… ..25 4.1.2 Pay off matrix………………………………………………………...27 4.1.3 Nash equilibrium points under fixed trade-price structures…………......30 4.1.4 Modified transshipment model with fixed trade prices…………...33 4.1.5 Optimal trade prices…………………………………………………34 4.2 Minimum match numbers………………………………………………….40 4.3 Optimal installationcost…………………………………………………….44 4.4 Overall performance………………………………………………………..47 Chapter 5: Case Studies……………………………………………………… 48 Appendix............................................................................................................... 56 Reference .................................................................................................................. ..59

    Biodiesel Processes Using a Simple
    Method”, Energy & Fuels, Vol. 22, 1972-1979, 2008.
    3. Bagajewicz, M. J., “On the use of heat pimps in total site heat integration”, Computers
    and Chemical Engineering, Vol. 27, 1707-1719, 2003.
    4. Sorin, M., and Hammache, A., “A new thermodynamic model for shaftwork targeting on
    total site”, Applied Thermal Engineering, Vol. 25, 961-972, 2005.
    5. Quintas, L. G., “A Note on Polymatrix Games”, International Journal of Game Theory,
    Vol. 18, 261-272, 1989.
    6. Miller, D. A., and Zucker, S. W., “Copositive-plis Lemke algorithm solves polymatrix
    games”, Operations Research Letters, Vol. 10, 285-290, 1991.
    7. Audet, C., Belhaiza, S., and Hansen, P., “Enumeration of All the Extreme Equilibria in
    Game Theory: Bimatrix and Polymatrix Games”, Journal of Optimization Theory and
    Applications, Vol. 129, No. 3, pp.349-372, June 2006.
    Borel, E. (1921): “La Theorie du Jeu et les Equations Integrales a Noyan Symetrique,”
    Computes Rendus de l’Academic des Sciences 173, 1304-1308, English translation by L.
    Savage, “The Theory of Play and Integral Equations with Skew Symmetric Kernels,”
    Econometrica 21 (1953), 97-100.
    8. Jon von Neumann: “Zur Theorie der Gesellschafsspiele”, Mathematische Annalen, 100,
    pp. 295-399 (1928).
    9. John von Neumann and Oskar Morgenstern: Theory of Games and Economic Behavior,
    Princeton University Press (1944).
    10. John F. Nash: “Equilibrium Points in n-Person Games”, Proceedings of the National
    Academy of Science of the United States of America, Vol. 36, No. 1. (Jan. 15, 1950), pp.
    48-49.
    11. John F. Nash, Jr.: “The bargaining Problem”, Econometrica, Vol. 18, No. 2. (Apr., 1950),
    pp. 155-162.
    12. J. F. Nash and L. S. Shapley, “A simple three-person poker game,”, in: Contributions to
    59
    60
    13. John Nash: “Non-Cooperative Games”, The Annals of Mathematics, Second Series, Vol.
    54, No. 2, (Sep., 1951), pp. 286-295.
    14. John F. Nash: “Two-Person Cooperative Games”, Econometrica, Vol. 21, No. 1. (1953),
    pp. 128-140.
    15. C. Audet, S. Belhaiza, and P. Hansen: “Enumeration of All the Extreme Equilibria in
    Game Theory: Bimatrix and Polymatrix Games”,JOTA, Vol. 129, No. 3, JUNE 2006.
    16. Audet, C., Hansen, P., Jaumard, B., and Savard, G., “Links between Linear Bilevel and
    Mixed 0-1 Programming Problems”, Journal of Optimization Theory and Applications,
    Vol. 93, pp. 273-300, 1997.
    17. A. Goršek , P. Glavič, and M. Bogataj, ‘Design of the optimal total site heat recovery
    system using SSSP approach”, Chemical Engineering and Processing 45, pp. 372-382,
    2006.

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE