| 研究生: |
王文暉 Wnag, Wen-Hui |
|---|---|
| 論文名稱: |
基於賽局理論的工業園區廠際熱整合策略 Total-Site Heat Integratio Based on Game Theory |
| 指導教授: |
張玨庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 熱交換器網路 、運載模式 、賽局理論 |
| 外文關鍵詞: | multi-plant heat integration, transshipment model, game theory, NLP |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統單一工廠內部的熱交換器網路設計,因僅能考慮自身程序流間的搭配,往往
不能達到工業園區熱整合的最大效益。但若考慮廠際熱交換,則每間工廠必須面對與其
廠競爭且合作的局面。換言之,工廠間雖可藉由彼此共用公用設施來達到降低自身生產
成本的目的,但同時也必須最大化自身獲利。而牽涉到此一競合關係是否能穩定存在的
關鍵,就是廠際熱交換是否能有一個公平且合乎各工廠自身的利益最大化的交易模式。
因此在本論文中我們引進賽局理論,並搭配運載模式,設法為廠際熱交換器網路設計問
題尋找最佳均衡解,進而建構出合理、可行且多贏的廠內及廠際熱交換網路。
Since, in a conventional heat exchanger network design, only the hot and cold streams
within a single process can be matched, the maximum possible benefit of multi-plant heat
integration in an industrial park may not be realizable with this approach. If inter-plant heat
exchanges are permissible, then each plant may have to compete and, at the same time,
cooperate with the other plants on site. In other words, although it is possible to reduce the
overall operating cost by sharing heating and cooling utilities, each plant must also try to
maximize its own financial gain. The presence of a stable equilibrium point in this situation
hinges upon a suitable price model for energy trading. In this study, the transshipment model
is modified according to game theory for the purpose of calculating the minimum hot and cold
utility consumption rates of all plants, the best trade prices and also the corresponding
inter-plant heat flows. On the basis of these results, a MILP model can then be formulated to
minimize the total number of matches and to identify the heat duty of every match. Finally,
two NLP models can be built accordingly to synthesize the optimal heat exchanger network
and to compute the payments shared by plants involved in every inter-plant heat exchange.
Biodiesel Processes Using a Simple
Method”, Energy & Fuels, Vol. 22, 1972-1979, 2008.
3. Bagajewicz, M. J., “On the use of heat pimps in total site heat integration”, Computers
and Chemical Engineering, Vol. 27, 1707-1719, 2003.
4. Sorin, M., and Hammache, A., “A new thermodynamic model for shaftwork targeting on
total site”, Applied Thermal Engineering, Vol. 25, 961-972, 2005.
5. Quintas, L. G., “A Note on Polymatrix Games”, International Journal of Game Theory,
Vol. 18, 261-272, 1989.
6. Miller, D. A., and Zucker, S. W., “Copositive-plis Lemke algorithm solves polymatrix
games”, Operations Research Letters, Vol. 10, 285-290, 1991.
7. Audet, C., Belhaiza, S., and Hansen, P., “Enumeration of All the Extreme Equilibria in
Game Theory: Bimatrix and Polymatrix Games”, Journal of Optimization Theory and
Applications, Vol. 129, No. 3, pp.349-372, June 2006.
Borel, E. (1921): “La Theorie du Jeu et les Equations Integrales a Noyan Symetrique,”
Computes Rendus de l’Academic des Sciences 173, 1304-1308, English translation by L.
Savage, “The Theory of Play and Integral Equations with Skew Symmetric Kernels,”
Econometrica 21 (1953), 97-100.
8. Jon von Neumann: “Zur Theorie der Gesellschafsspiele”, Mathematische Annalen, 100,
pp. 295-399 (1928).
9. John von Neumann and Oskar Morgenstern: Theory of Games and Economic Behavior,
Princeton University Press (1944).
10. John F. Nash: “Equilibrium Points in n-Person Games”, Proceedings of the National
Academy of Science of the United States of America, Vol. 36, No. 1. (Jan. 15, 1950), pp.
48-49.
11. John F. Nash, Jr.: “The bargaining Problem”, Econometrica, Vol. 18, No. 2. (Apr., 1950),
pp. 155-162.
12. J. F. Nash and L. S. Shapley, “A simple three-person poker game,”, in: Contributions to
59
60
13. John Nash: “Non-Cooperative Games”, The Annals of Mathematics, Second Series, Vol.
54, No. 2, (Sep., 1951), pp. 286-295.
14. John F. Nash: “Two-Person Cooperative Games”, Econometrica, Vol. 21, No. 1. (1953),
pp. 128-140.
15. C. Audet, S. Belhaiza, and P. Hansen: “Enumeration of All the Extreme Equilibria in
Game Theory: Bimatrix and Polymatrix Games”,JOTA, Vol. 129, No. 3, JUNE 2006.
16. Audet, C., Hansen, P., Jaumard, B., and Savard, G., “Links between Linear Bilevel and
Mixed 0-1 Programming Problems”, Journal of Optimization Theory and Applications,
Vol. 93, pp. 273-300, 1997.
17. A. Goršek , P. Glavič, and M. Bogataj, ‘Design of the optimal total site heat recovery
system using SSSP approach”, Chemical Engineering and Processing 45, pp. 372-382,
2006.
校內:2023-01-01公開