| 研究生: |
歐陽貝依 Ou Yang, Pei-Yi |
|---|---|
| 論文名稱: |
以不同細胞組成3D層片促進周邊神經再生 Using Different Cells to Form 3D Cell Sheets for Peripheral Nerve Regeneration |
| 指導教授: |
吳佳慶
Wu, Chia-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 周邊神經損傷 、細胞層片 、神經再生 、許旺細胞 |
| 外文關鍵詞: | Peripheral Nerve Injury (PNI), Cell Sheet, Nerve Regeneration, Schwann Cell (SC) |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
周邊神經損傷(Peripheral Nerve Injury, PNI)是一種因壓迫或截斷導致神經功能喪失的損害。本文聚焦於完全截斷型周邊神經損傷的修復治療方法。當神經斷裂距離過大時,由於神經再生能力有限,修復往往失敗,並伴隨神經瘤形成、感覺喪失及肌肉萎縮,這對臨床治療構成重大挑戰。本研究旨在探討不同細胞製成的細胞層片(Cell Sheet)在大鼠周邊神經損傷模型中的應用,並分析其對神經再生及功能恢復的潛力。
我們製備了多種類型的細胞層片,包括神經來源的層片:許旺細胞(Schwann Cell, SC)、脂肪幹細胞(Adipose Stem Cell, ASC)、以及脂肪幹細胞分化的許旺細胞樣細胞(Adipose Stem Cell-Derived Schwann Cell, ASCSC);以及肌肉來源的層片:肌母細胞(Myoblast)和肌管細胞(Myotube)。通過qPCR、免疫螢光染色及Western Blot分析這些細胞層片在基因及蛋白層面的改變。此外,我們利用大鼠坐骨神經截斷動物模型,評估各層片在損傷後10天對周邊神經修復的效果,並以步態分析(Gait Analysis)、腓腸肌重量比(Relative Gastrocnemius Muscle Weight, RGMW)、及組織免疫螢光染色作為再生指標。
目前的研究結果顯示,神經來源的細胞層片(特別是SC和ASCSC)可顯著促進神經再生。在步態分析中,這些細胞層片顯著改善了動物的運動模式,並增加了受損神經支配的肌肉重量。此外,軸突修復長度及再髓鞘化相關蛋白的表現亦有所提升,其修復效果接近健康組(Sham)。相比之下,肌肉來源的層片在功能恢復方面的效果有限,動物的步態異常及肌肉萎縮仍然持續,可能與肌肉層片缺乏支持神經修復的微環境有關。然而,這些結果也間接驗證了我們的假設:肌肉層片雖然抑制了神經功能的進一步修復,但成功減少了損傷部位的過度細胞增生,從而有效避免了神經瘤的形成。
本研究證實,神經來源的細胞層片(特別是SC和ASCSC)在周邊神經修復中展現了明顯的治療優勢,並強調細胞外基質(Extracellular Matrix, ECM)及培養條件在細胞分化及功能恢復中的關鍵作用。未來研究應進一步探索細胞層片的穩定性、ECM與細胞間的交互機制,以推動細胞層片技術在再生醫學及臨床應用中的進一步發展。
Peripheral nerve injury (PNI), caused by compression or transection, leads to functional deficits and poses significant challenges in clinical treatment. When the gap between nerve ends is too large, the limited regenerative capacity of nerves often results in repair failure, accompanied by complications such as neuroma formation, sensory loss, and muscle atrophy, making it a formidable obstacle in clinical management. This study explores the potential of using various cell sheets as therapeutic tools for peripheral nerve regeneration in a rat sciatic nerve transection model, analyzing their ability to promote regeneration and functional recovery.
We prepared neural-derived cell sheets, including Schwann cells (SC), adipose stem cells (ASC), and adipose stem cell-derived Schwann-like cells (ASCSC), as well as muscle-derived cell sheets (Myoblast and Myotube). These cell sheets were characterized by qPCR, immunofluorescence staining, and Western blot to analyze their gene and protein expression changes. The efficacy of these sheets was evaluated in a rat sciatic nerve transection model, with outcomes measured at six weeks post-implantation through gait analysis, relative gastrocnemius muscle weight (RGMW), and tissue immunofluorescence imaging as indicators of regeneration.
The results demonstrated that neural-derived cell sheets, particularly SC and ASCSC, promoted nerve regeneration. Improvements in gait patterns and the increased weight of target muscles were observed compared to the untreated group. Additionally, enhanced axonal regeneration and increased expression of remyelination-associated proteins brought the repair outcomes closer to those of the healthy (Sham) group. In contrast, muscle-derived cell sheets showed limited efficacy in functional recovery, with persistent gait abnormalities and muscle atrophy. These findings suggest that the lack of a supportive microenvironment for nerve repair may limit their effectiveness.
This study suggests that neural-derived cell sheets, particularly ASCSC, have significant clinical application advantages in peripheral nerve repair and highlights the roles of cell components in 3D sheet and culture conditions in cell differentiations and functional recovery. Future studies should focus on exploring the long-term stability and mechanical properties of these sheets and the interaction mechanisms between sheet and regenerated tissue to provide more evidence for advancing cell sheet technology in regenerative medicine and clinical applications.
1. Akram, R., H. Anwar, M. S. Javed, A. Rasul, A. Imran, S. A. Malik, C. Raza, I. U. Khan, F. Sajid, T. Iman, T. Sun, H. S. Han and G. Hussain (2022). "Axonal Regeneration: Underlying Molecular Mechanisms and Potential Therapeutic Targets." Biomedicines 10(12).
2. Arimitsu N, S. J., Iinuma M, Umehara T, Fujiwara N, Takai K, Wakisaka S, Hirotsu C, Suzuki T, Beppu M, Niki H, Suzuki N. (2016). "Human iPS cell derived neural cell sheets exhibit mature neural and extendable scaffold functions and promote recovery in injured mouse spinal cords." Stem Cell Res Ther.
3. Behtaj, S., J. A. K. Ekberg and J. A. St John (2022). "Advances in Electrospun Nerve Guidance Conduits for Engineering Neural Regeneration." Pharmaceutics 14(2): 219.
4. Bolívar, S., X. Navarro and E. Udina (2020). "Schwann Cell Role in Selectivity of Nerve Regeneration." Cells 9(9).
5. Chang, K.-T., Y.-H. Hung, Z.-Y. Chiu, J.-Y. Chang, K.-T. Yen and C.-Y. Liu (2023). "Fabrication of elliptically constructed liquid crystalline elastomeric scaffolds for 3D artificial tissues." Journal of the Mechanical Behavior of Biomedical Materials 146: 106056.
6. Chang, Y. J., Y. J. Chen, C. W. Huang, S. C. Fan, B. M. Huang, W. T. Chang, Y. S. Tsai, F. C. Su and C. C. Wu (2016). "Cyclic Stretch Facilitates Myogenesis in C2C12 Myoblasts and Rescues Thiazolidinedione-Inhibited Myotube Formation." Front Bioeng Biotechnol 4: 27.
7. Chen, H., L. Jiang, D. Zhang, J. Chen, X. Luo, Y. Xie, T. Han, L. Wang, Z. Zhang, X. Zhou and H. Yan (2022). "Exploring the Correlation Between the Regulation of Macrophages by Regulatory T Cells and Peripheral Neuropathic Pain." Front Neurosci 16: 813751.
8. Chen, J., L. Wang, M. Liu, G. Gao, W. Zhao, Q. Fu and Y. Wang (2022). "Implantation of adipose-derived mesenchymal stem cell sheets promotes axonal regeneration and restores bladder function after spinal cord injury." Stem Cell Res Ther 13(1): 503.
9. Chen, S. H., C. C. Wu, W. L. Tseng, F. I. Lu, Y. H. Liu, S. P. Lin, S. C. Lin and Y. Y. Hsueh (2023). "Adipose-derived stem cells modulate neuroinflammation and improve functional recovery in chronic constriction injury of the rat sciatic nerve." Front Neurosci 17: 1172740.
10. Chen, Y. C., E. Y. Chuang, Y. K. Tu, C. L. Hsu and N. C. Cheng (2024). "Human platelet lysate-cultured adipose-derived stem cell sheets promote angiogenesis and accelerate wound healing via CCL5 modulation." Stem Cell Res Ther 15(1): 163.
11. Gaudet, A. D., P. G. Popovich and M. S. Ramer (2011). "Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury." J Neuroinflammation 8: 110.
12. Goncalves, C. A., M. C. Leite and M. C. Guerra (2010). "Adipocytes as an Important Source of Serum S100B and Possible Roles of This Protein in Adipose Tissue." Cardiovasc Psychiatry Neurol 2010: 790431.
13. Herold, S., P. Kumar, K. Jung, I. Graf, H. Menkhoff, X. Schulz, M. Bahr and K. Hein (2016). "CatWalk gait analysis in a rat model of multiple sclerosis." BMC Neurosci 17(1): 78.
14. Hooper, R. C., P. S. Cederna, D. L. Brown, S. C. Haase, J. F. Waljee, B. M. Egeland, B. P. Kelley and T. A. Kung (2020). "Regenerative Peripheral Nerve Interfaces for the Management of Symptomatic Hand and Digital Neuromas." Plastic and Reconstructive Surgery - Global Open 8(6).
15. Hsueh, Y. Y., Y. J. Chang, T. C. Huang, S. C. Fan, D. H. Wang, J. J. Chen, C. C. Wu and S. C. Lin (2014). "Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells." Biomaterials 35(7): 2234-2244.
16. Hsueh, Y. Y., Y. L. Chiang, C. C. Wu and S. C. Lin (2012). "Spheroid formation and neural induction in human adipose-derived stem cells on a chitosan-coated surface." Cells Tissues Organs 196(2): 117-128.
17. Hu, D., C. Gao, J. Li, P. Tong and Y. Sun (2024). "The preparation methods and types of cell sheets engineering." Stem Cell Research & Therapy 15(1): 326.
18. Huang, C. W., S. Y. Lu, T. C. Huang, B. M. Huang, H. S. Sun, S. H. Yang, J. I. Chuang, Y. Y. Hsueh, Y. T. Wu and C. C. Wu (2020). "FGF9 induces functional differentiation to Schwann cells from human adipose derived stem cells." Theranostics 10(6): 2817-2831.
19. Iwata, T., M. Yamato, K. Washio, T. Ando, T. Okano and I. Ishikawa (2015). "Cell sheets for periodontal tissue engineering." Current Oral Health Reports 2: 252-256.
20. Jessen, K. R. and R. Mirsky (2019). "The success and failure of the Schwann cell response to nerve injury." Frontiers in cellular neuroscience 13: 33.
21. Kan, H. W., J. H. Hsieh, S. W. Wang, T. Y. Yeh, M. F. Chang, T. Y. Tang, C. C. Chao, F. P. Feng and S. T. Hsieh (2022). "Nonpermissive Skin Environment Impairs Nerve Regeneration in Diabetes via Sec31a." Ann Neurol 91(6): 821-833.
22. Kashiyama, N., R. L. Kormos, Y. Matsumura, A. D'Amore, S. Miyagawa, Y. Sawa and W. R. Wagner (2022). "Adipose-derived stem cell sheet under an elastic patch improves cardiac function in rats after myocardial infarction." The Journal of Thoracic and Cardiovascular Surgery 163(4): e261-e272.
23. Katayama, T., Y. Chigi and D. Okamura (2023). "The ensured proliferative capacity of myoblast in serum-reduced conditions with Methyl-β-cyclodextrin." Front Cell Dev Biol 11: 1193634.
24. Kim, K. H., J. Qiu and S. Kuang (2020). "Isolation, Culture, and Differentiation of Primary Myoblasts Derived from Muscle Satellite Cells." Bio Protoc 10(14): e3686.
25. Kiryu-Seo, S., N. Ohno, G. J. Kidd, H. Komuro and B. D. Trapp (2010). "Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport." J Neurosci 30(19): 6658-6666.
26. Lakes, E. H. and K. D. Allen (2016). "Gait analysis methods for rodent models of arthritic disorders: reviews and recommendations." Osteoarthritis Cartilage 24(11): 1837-1849.
27. Leach, G. A., R. A. Dean, N. G. Kumar, C. Tsai, F. E. Chiarappa, P. S. Cederna, T. A. Kung and C. M. Reid (2023). "Regenerative Peripheral Nerve Interface Surgery: Anatomic and Technical Guide." Plast Reconstr Surg Glob Open 11(7): e5127.
28. Lemos, R. S., L. G. B. Bentes, M. Vasconcelos, D. F. Tramontin, L. Costa, A. Pimentel, N. P. Araujo, M. C. Andrade, D. N. Somensi and R. S. M. Barros (2024). "End-to-side neurorrhaphy in the reconstruction of peripheral segmental neural loss: an experimental study." Acta Cir Bras 39: e394024.
29. Liu, B., W. Xin, J.-R. Tan, R.-P. Zhu, T. Li, D. Wang, S.-S. Kan, D.-K. Xiong, H.-H. Li and M.-M. Zhang (2019). "Myelin sheath structure and regeneration in peripheral nerve injury repair." Proceedings of the National Academy of Sciences 116(44): 22347-22352.
30. Lopes, B., P. Sousa, R. Alvites, M. Branquinho, A. C. Sousa, C. Mendonça, L. M. Atayde, A. L. Luís, A. S. P. Varejão and A. C. Maurício (2022). "Peripheral Nerve Injury Treatments and Advances: One Health Perspective." Int J Mol Sci 23(2).
31. Miana, V. V. and E. A. P. Gonzalez (2018). "Adipose tissue stem cells in regenerative medicine." Ecancermedicalscience 12: 822.
32. Mietto, B. S., P. Jhelum, K. Schulz and S. David (2021). "Schwann Cells Provide Iron to Axonal Mitochondria and Its Role in Nerve Regeneration." J Neurosci 41(34): 7300-7313.
33. Min, Q., D. B. Parkinson and X. P. Dun (2021). "Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge." Glia 69(2): 235-254.
34. Minarelli, J., E. L. Davis, A. Dickerson, W. C. Moore, J. A. Mejia, Z. Gugala, E. A. Olmsted-Davis and A. R. Davis (2019). "Characterization of neuromas in peripheral nerves and their effects on heterotopic bone formation." Mol Pain 15: 1744806919838191.
35. Mitsuru Akashi Chun-Yen Liu, M. M. (2014). "The construction of cell-density controlled threedimensional tissues by coating micrometer-sized collagen fiber matrices on single cell surfaces." RSC Advances.
36. Modrak, M., M. A. H. Talukder, K. Gurgenashvili, M. Noble and J. C. Elfar (2020). "Peripheral nerve injury and myelination: Potential therapeutic strategies." J Neurosci Res 98(5): 780-795.
37. Nocera, G. and C. Jacob (2020). "Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury." Cellular and Molecular Life Sciences 77.
38. Owens, J., K. Moreira and G. Bain (2013). "Characterization of primary human skeletal muscle cells from multiple commercial sources." In Vitro Cell Dev Biol Anim 49(9): 695-705.
39. Park, D., D. Kim, S. J. Park, J. H. Choi, Y. Seo, D.-H. Kim, S.-H. Lee, J. K. Hyun, J. Yoo, Y. Jung and S. H. Kim (2022). "Micropattern-based nerve guidance conduit with hundreds of microchannels and stem cell recruitment for nerve regeneration." npj Regenerative Medicine 7(1): 62.
40. Rhode, S. C., J. P. Beier and T. Ruhl (2021). "Adipose tissue stem cells in peripheral nerve regeneration-In vitro and in vivo." J Neurosci Res 99(2): 545-560.
41. Shimizu, T., M. Yamato, A. Kikuchi and T. Okano (2003). "Cell sheet engineering for myocardial tissue reconstruction." Biomaterials 24(13): 2309-2316.
42. Su, Q., M. I. Nasser, J. He, G. Deng, Q. Ouyang, D. Zhuang, Y. Deng, H. Hu, N. Liu, Z. Li, P. Zhu and G. Li (2022). "Engineered Schwann Cell-Based Therapies for Injury Peripheral Nerve Reconstruction." Front Cell Neurosci 16: 865266.
43. Suzuki, N., N. Arimitsu, J. Shimizu, K. Takai, C. Hirotsu, Y. Ueda, S. Wakisaka, N. Fujiwara and T. Suzuki (2017). "Neuronal Cell Sheets of Cortical Motor Neuron Phenotype Derived from Human iPSCs." Cell Transplant 26(8): 1355-1364.
44. Takahashi, H., T. Shimizu and T. Okano (2018). "Engineered Human Contractile Myofiber Sheets as a Platform for Studies of Skeletal Muscle Physiology." Scientific Reports 8(1): 13932.
45. Thibodeau, A., T. Galbraith, C. M. Fauvel, H. T. Khuong and F. Berthod (2022). "Repair of peripheral nerve injuries using a prevascularized cell-based tissue-engineered nerve conduit." Biomaterials 280: 121269.
46. Vasanthan, J., N. Gurusamy, S. Rajasingh, V. Sigamani, S. Kirankumar, E. L. Thomas and J. Rajasingh (2020). "Role of Human Mesenchymal Stem Cells in Regenerative Therapy." Cells 10(1).
47. Wan, T., Q. C. Li, M. Y. Qin, Y. L. Wang, F. S. Zhang, X. M. Zhang, Y. C. Zhang and P. X. Zhang (2024). "Strategies for Treating Traumatic Neuromas with Tissue-Engineered Materials." Biomolecules 14(4).
48. Wang, B., C. F. Lu, Z. Y. Liu, S. Han, P. Wei, D. Y. Zhang, Y. H. Kou and B. G. Jiang (2022). "Chitin scaffold combined with autologous small nerve repairs sciatic nerve defects." Neural Regen Res 17(5): 1106-1114.
49. Wang, T., A. Ito, T. Aoyama, R. Nakahara, A. Nakahata, X. Ji, J. Zhang, H. Kawai and H. Kuroki (2018). "Functional evaluation outcomes correlate with histomorphometric changes in the rat sciatic nerve crush injury model: A comparison between sciatic functional index and kinematic analysis." PLOS ONE 13(12): e0208985.
50. Wei, C., Y. Guo, Z. Ci, M. Li, Y. Zhang and Y. Zhou (2024). "Advances of Schwann cells in peripheral nerve regeneration: From mechanism to cell therapy." Biomedicine & Pharmacotherapy 175: 116645.
51. Wu, J., Y. Zhang, X. Zhang, Z. Lin and G. Li (2022). "Regenerative Peripheral Nerve Interfaces Effectively Prevent Neuroma Formation After Sciatic Nerve Transection in Rats." Front Mol Neurosci 15: 938930.
52. Xu, G., X. Zou, Y. Dong, A. Alhaskawi, H. Zhou, S. H. A. Ezzi, V. G. Kota, M. Abdulla, O. Alenikova, S. A. Abdalbary and H. Lu (2024). "Advancements in autologous peripheral nerve transplantation care: a review of strategies and practices to facilitate recovery." Front Neurol 15: 1330224.
53. Yamato, M. and T. Okano (2004). "Cell sheet engineering." Materials Today 7(5): 42-47.
54. Yang, J., M. Yamato, T. Shimizu, H. Sekine, K. Ohashi, M. Kanzaki, T. Ohki, K. Nishida and T. Okano (2007). "Reconstruction of functional tissues with cell sheet engineering." Biomaterials 28(34): 5033-5043.
55. Yang, Z., Y. Yang, Y. Xu, W. Jiang, Y. Shao, J. Xing, Y. Chen and Y. Han (2021). "Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration." Stem Cell Research & Therapy 12(1).
56. Yu, J., M.-Y. Wang, H.-C. Tai and N.-C. Cheng (2018). "Cell sheet composed of adipose-derived stem cells demonstrates enhanced skin wound healing with reduced scar formation." Acta Biomaterialia 77: 191-200.
57. Zhai, X. and Y. Wang (2024). "Physical modulation and peripheral nerve regeneration: a literature review." Cell Regen 13(1): 32.