簡易檢索 / 詳目顯示

研究生: 吳俊德
Wu, Chun-Te
論文名稱: 自旋軌道交互作用對量子雙環內電洞能階的影響
Effect of spin-orbit interaction on the hole energy levels in the concentric quantum double rings
指導教授: 陳岳男
Chen, Yueh-Nan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 41
中文關鍵詞: 自旋軌道交互作用
外文關鍵詞: spin-orbit interaction
相關次數: 點閱:59下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用徑向的無限深位能阱來模擬利用自組裝法(self-assembled)所製造出的半導體量子單環與量子雙環。我們以量子單環的確切解為基底來展開量子單環和雙環中的電子或電洞的哈米頓(Hamiltonian)函數,再將其數值對角化求得本徵能量及本徵函數。我們發現在外加均勻磁場下,量子單及雙環皆存在AB效應(Aharonov-Bohm effect)。此外,我們也分別研究了在外加均勻磁場及自旋軌道交互作用下,電子與電洞之簡併能階因對稱性破壞造成的變化。我們亦研究了在自旋軌道交互作用之下,AB週期震盪行為的變化。

    In this thesis, a model of radial infinite square well is considered to simulate the self-assembled semiconductor single quantum ring and double rings. By using the exact solutions of the single quantum ring, one can expand the Hamiltonian function of electron or hole in single quantum ring and double rings and obtain the eigen-energies and eigen-functions numerically. Aharonov-Bohm effect is found to exist in both of the two cases under the exterior uniform magnetic field. In addition, we also study the energy spectra in the presence of spin-orbit interaction. It is found that the periodic oscillation of AB effect can be degraded seriously by the spin-orbit interaction.

    1.簡介..................................................1 2.理論模型 2.1 量子單環的理論模型......................................................3 2.2 量子單環的AB效應.....................................................11 2.3 量子雙環的理論模型....................................................14 2.4 量子雙環中電子的自旋軌道交互作用.....................21 2.5 量子雙環中電洞的自旋軌道交互作用.....................23 3.結果與討論 3.1 電子的自旋軌道交互作用對量子環AB效應的影響............25 3.2 電洞的自旋軌道交互作用對量子環AB效應的影響............31 4.結論..................................................40 5.參考文獻..............................................41

    [1]Y.Aharonov,D.Bohm, Phys. Rev. 115,485-491 (1959).
    [2]R.G.Chambers, Phys. Rev. Lett. 5,1(1960)
    [3]R. Winkler, Phys. Rev. B 62, 4245 (2000).
    [4]R. Winkler, Phys. Rev. B 65, 155303 (2002).
    [5]R. A. Römer, and M. E. Raikh, Phys. Rev. B 62,7045(2000).
    [6]A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M. Garcia, and P. M. Petro, Phys. Rev. Lett. 84,2223 (2000).
    [7]J. Song, and S. E. Ulloa, Phys. Rev. B 63,125302 (2001).
    [8]H. Hu, J. Zhu, D. Li, and J. Xiong, Phys. Rev. B 63,195307 (2001).
    [9]Y. A. Bychkov, and E. I. Rashba, J. Phys. C 17, 6039 (1984).
    [10]O. Voskoboynikov, C. P. Lee, and O. Tretyak, Phys. Rev.B 63,165306 (2001).
    [11]F. M. Alves, G. E. Marques, V. López-Richard, and C. Trallero-Giner, Semicond. Sci. Technol. 22 301-306(2007).
    [12]A. Manaselyan, and T. Chakraborty, Euro. Phys. Lett. 88, 17003 (2009).
    [13]D. Stepanenko, M. Lee, G. Burkard, and D. Loss, Phys. Rev. B 79, 235301 (2009).
    [14] T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai,
    T. Tateno, J. Kim, T. Noda, M. Kawabe, K. Sakoda, G. Kido, and N. Koguchi, Nano Lett. 5, 425 (2005).
    [15] G. Burkard, Nature Materials 7, 100 (2008).

    下載圖示 校內:立即公開
    校外:2011-07-05公開
    QR CODE