| 研究生: |
陳依孺 Chen, Yi-Ju |
|---|---|
| 論文名稱: |
氧化鋅鎂薄膜應用於壓電型奈米發電機之開發研究 Development of MgxZn1-xO thin films for piezoelectric nanogenerator |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay 劉全璞 Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 氧化鋅 、氧化鋅鎂薄膜 、壓電係數(d33) 、壓電型奈米發電機 |
| 外文關鍵詞: | ZnO, MgxZn1-xO films, piezoelectric constant(d33), piezoelectric nanogenerator |
| 相關次數: | 點閱:90 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鋅(Zinc oxide, ZnO) 是一種n型半導體材料,擁有直接且寬的能隙(3.3 eV)、高發光效率以及顯著的c軸(c-axis)優選成長方向,此外,氧化鋅亦有壓電及壓光電等效應,因此適合用於奈米發電機、發光二極體、紫外光感測器等光電元件。近幾年來,可攜帶型的電子產品趨向輕巧、智慧型以及多元化等方向推陳出新,使得電能的生產和儲存及其相關領域也漸漸受到重視。然而,傳統的發電方式,例如:火力發電、核能發電,皆有廢料處理、環境汙染等問題,同時它們皆也不利於攜帶型裝置的供電,因此研究可發電又兼具環保的材料是目前學術以及企業相當著重的議題,其中又以奈米發電機為目前最有潛力的元件之一。
本實驗利用合金化系統材料來試著提升氧化鋅的壓電係數(12.4 pm/V),利用鎂原子置換氧化鋅中的鋅原子以改變原先材料的結構、鍵結、能隙及壓電係數等性質,其中,鎂摻雜進氧化鋅中可以大範圍地調控氧化鋅的能隙(3.3~7.3 eV),因此氧化鋅鎂材料用來作為紫外光感測器也相當合適。本實驗以純氧化鋅及氧化鎂靶材共濺鍍出氧化鋅鎂系統之薄膜,在固定基板溫度、沉積氣體種類、沉積氣體流量等參數下探討不同含量的鎂元素摻雜對於氧化鋅的結構、能隙等特性的影響,並找出具有最佳壓電係數(d33)的氧化鋅鎂薄膜。結集所有合金化的材料特性後,就能研發及衍伸出具有多種功能之壓電元件、裝置。根據實驗結果顯示,大部分的氧化鋅鎂薄膜皆有明顯地柱狀結構並且有著以c軸成長的優選方向,隨著鎂含量上升,薄膜的柱狀結構漸漸地不明顯同時產生立方結構的相(cubic structure)。整體而言,氧化鋅鎂材料相較於純氧化鋅有明顯增加,但不會隨鎂含量上升而上升,約在鎂含量為11 at%之薄膜具有最高的壓電係數(~54 pm/V),約為純氧化鋅之d33的4倍之多,證明合金化的確是提升壓電係數的方法之一。此材料可以結合半導體、壓電電子(piezotronic)、壓電光電子(piezo-phototronic)特性與壓電性(piezoelectricity)來提升元件的性質。最後,本研究還將製備的氧化鋅鎂薄膜用於壓電型奈米發電機元件,證明該材料確實可以做為奈米發電機的新壓電材料。
此實驗中還選用了有較高壓電係數的氧化鋅鎂薄膜,將其製備成簡易的奈米發電機元件,並與純氧化鋅元件做比較,結果顯示在不同頻率下的輸出電壓與電流密度,氧化鋅鎂薄膜元件皆具有較優異的輸出表現,證實氧化鋅鎂材料在壓電型奈米發電機元件具相當的潛力。在薄膜與元件皆未做任何的前處理或進一步的優化(optimized)的前提下,2.0赫茲的氧化鋅鎂薄膜就有高達0.1 V以及70 nA/cm2的電壓與電流密度輸出量,由此可見,若將元件改良或將薄膜做前處理,皆有很大的機會可以再提升這樣的輸出結果。
Wurtzite structure materials such as ZnO exhibits piezoelectric and semiconducting propertie, represented by piezoelectric coefficient as a dominant physical characteristic. In this paper, we investigate the dependence of piezoelectric coefficient on Mg content in MgxZn1-xO thin films deposited on Si (111) by radio frequency magnetron sputtering. The deposition temperature is fixed at 250℃ and all the films were grown to 380±20 nm in thickness. X-ray diffraction analysis confirms that all MgxZn1-xO films show high crystallinity with strong preferential orientation along [0001] growth direction. Moreover, the diffraction peaks shift toward higher angles, which confirms the substitution of the smaller ionic radius of magnesium for zinc sites. The morphology and composition of the films are examined by scanning electron microscopy and energy dispersive X-ray spectroscopy. The piezoelectric coefficient of MgxZn1-xO films are measured by piezoresponse force microscopy, exhibiting the maximum occurring at an intermediate Mg concentration, which is largely improved as compared to ZnO. And the MgxZn1-xO–based nanogenerators(NGs) also has better output performance than pure ZnO film-based NGs, which indicates that the MgxZn1-xO films hold great promise to be applied in piezoelectric NGs.
[1] Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," Journal of Physics: Condensed Matter, vol. 16, pp. 829-858, 2004.
[2] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, et al., "A comprehensive review of ZnO materials and devices," Journal of applied physics, vol. 98, p. 041301, 2005.
[3] T. Hanada, "Basic properties of ZnO, GaN, and related materials," in Oxide and Nitride Semiconductors, ed: Springer, pp. 1-19. 2009.
[4] S. A. Wilson, R. P. Jourdain, Q. Zhang, R. A. Dorey, C. R. Bowen, M. Willander, et al., "New materials for micro-scale sensors and actuators: An engineering review," Materials Science and Engineering: R: Reports, vol. 56, pp. 1-129, 2007.
[5] T. Aoki, Y. Hatanaka, and D. C. Look, "ZnO diode fabricated by excimer-laser doping," Applied Physics Letters, vol. 76, pp. 3257-3258, 2000.
[6] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, et al., "Optically pumped lasing of ZnO at room temperature," Applied Physics Letters, vol. 70, pp. 2230-2232, 1997.
[7] F. Xue, L. Zhang, W. Tang, C. Zhang, W. Du, and Z. L. Wang, "Piezotronic effect on ZnO nanowire film based temperature sensor," ACS applied materials & interfaces, vol. 6, pp. 5955-5961, 2014.
[8] R. C. Chang, S. Y. Chu, P. W. Yeh, C. S. Hong, P. C. Kao, and Y. J. Huang, "The influence of Mg doped ZnO thin films on the properties of Love wave sensors," Sensors and Actuators B: Chemical, vol. 132, pp. 290-295, 2008.
[9] Z. Alaie, S. Mohammad Nejad, and M. H. Yousefi, "Recent advances in ultraviolet photodetectors," Materials Science in Semiconductor Processing, vol. 29, pp. 16-55, 2015.
[10] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, "UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering," Advanced Materials, vol. 18, pp. 2720-2724, 2006.
[11] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, "Piezoelectric nanogenerator using CdS nanowires," Applied Physics Letters, vol. 92, pp. 1-3, 2008.
[12] L. Lin, C. H. Lai, Y. Hu, Y. Zhang, X. Wang, C. Xu, et al., "High output nanogenerator based on assembly of GaN nanowires," Nanotechnology, vol. 22, p. 475401, 2011.
[13] H. Chen, C. Jia, C. Zhang, Z. Wang, and C. Liu, "Power harvesting with PZT ceramics," in Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on, pp. 557-560, 2007.
[14] C. H. Wang, K. Y. Lai, Y. C. Li, Y. C. Chen, and C. P. Liu, "Ultrasensitive Thin‐Film‐Based AlxGa1−xN Piezotronic Strain Sensors via Alloying‐Enhanced Piezoelectric Potential," Advanced Materials, vol. 27, pp. 6289-6295, 2015.
[15] M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, and N. Kawahara, "Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering," Advanced Materials, vol. 21, pp. 593-596, 2009.
[16] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, et al., "Small band gap bowing in In1−xGaxN alloys," Applied Physics Letters, vol. 80, pp. 4741-4743, 2002.
[17] Y. Y. Chen, C. H. Wang, G. S. Chen, Y. C. Li, and C. P. Liu, "Self-powered n-MgxZn1-xO/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect," Nano Energy, vol. 11, pp. 533-539, 2015.
[18] W. F. Yang, B. Liu, R. Chen, L. M. Wong, S. J. Wang, and H. D. Sun, "Pulsed laser deposition of high-quality ZnCdO epilayers and ZnCdO/ZnO single quantum well on sapphire substrate," Applied Physics Letters, vol. 97, p. 061911, 2010.
[19] X. Ma and Z. Wang, "The optical properties of rare earth Gd doped ZnO nanocrystals," Materials Science in Semiconductor Processing, vol. 15, pp. 227-231, 2012.
[20] W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, et al., "Compositionally-tuned epitaxial cubic MgxZn1−xO on Si(100) for deep ultraviolet photodetectors," Applied Physics Letters, vol. 82, pp. 3424-3426, 2003.
[21] Z. L. Wang, G. Zhu, Y. Yang, S. Wang, and C. Pan, "Progress in nanogenerators for portable electronics," Materials today, vol. 15, pp. 532-543, 2012.
[22] R. J. Goldston and P. H. Rutherford, Introduction to plasma physics: CRC Press, 1995.
[23] Q. Z. Luo, N. D’angelo, and R. L. Merlino, "Shock formation in a negative ion plasma," Physics of Plasmas, vol. 5, pp. 2868-2870, 1998.
[24] A. Rutscher, "Characteristics of low-temperature plasmas under nonthermal conditions–a short summary," Low Temperature Plasmas: Fundamentals, Technologies and Techniques, 2008.
[25] G. Franz, Low pressure plasmas and microstructuring technology: Springer Science & Business Media, 2009.
[26] 周麗新, "薄膜工程," 中國材料科學學會網路輔助教學課程, vol. 18, p. 55, 1997.
[27] 董家齊 and 陳寬任, "奇妙的物質第四態-電漿," 科學發展月刊, vol. 354, pp. 52-59, 2002.
[28] J. A. Bittencourt, Fundamentals of plasma physics: Springer Science & Business Media, 2013.
[29] J. E. Harry, "Plasma, an Overview," Introduction to Plasma Technology: Science, Engineering and Applications, pp. 1-13, 2010.
[30] P. Sigmund, "Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets," Physical Review, vol. 184, pp. 383-416, 1969.
[31] D. E. Harrison, "Theory of the Sputtering Process," Physical Review, vol. 102, pp. 1473-1480, 1956.
[32] K. H. Kingdon and I. Langmuir, "The Removal of Thorium from the Surface of a Thoriated Tungsten Filament by Positive Ion Bombardment," Physical Review, vol. 22, pp. 148-160, 1923.
[33] E. B. Henschke, "New Collision Theory of Cathode Sputtering of Metals at Low Ion Energies," Physical Review, vol. 106, pp. 737-753, 1957.
[34] G. Cao, Nanostructures and nanomaterials: synthesis, properties and applications: World Scientific, 2004.
[35] K. Toshiyuki, "Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow," Japanese Journal of Applied Physics, vol. 53, p. 05FF08, 2014.
[36] D. K. Maurya, A. Sardarinejad, and K. Alameh, "Recent developments in RF magnetron sputtered thin films for pH sensing applications—An overview," Coatings, vol. 4, pp. 756-771, 2014.
[37] P. J. Kelly and R. D. Arnell, "Magnetron sputtering: a review of recent developments and applications," Vacuum, vol. 56, pp. 159-172, 2000.
[38] M. Ohring, Materials science of thin films, second edition ed. London: Academic press, 2001.
[39] M. Dvorak, S. H. Wei, and Z. Wu, "Origin of the variation of exciton binding energy in semiconductors," Physical review letters, vol. 110, pp. 1-5, 2013.
[40] F. Tuomisto, K. Saarinen, D. C. Look, and G. C. Farlow, "Introduction and recovery of point defects in electron-irradiated ZnO," Physical Review B, vol. 72, p. 085206, 2005.
[41] A. Janotti and C. G. Van de Walle, "Fundamentals of zinc oxide as a semiconductor," Reports on progress in physics, vol. 72, pp. 1-29, 2009.
[42] E. R. Weber, Semiconductors and semimetals vol. 38: Academic press, 1993.
[43] A. Janotti and C. G. Van de Walle, "Native point defects in ZnO," Physical Review B, vol. 76, pp. 1-22, 2007.
[44] S. Brahma, J. Khatei, S. Sunkara, K. Lo, and S. Shivashankar, "Self-assembled ZnO nanoparticles on ZnO microsheet: ultrafast synthesis and tunable photoluminescence properties," Journal of Physics D: Applied Physics, vol. 48, pp. 1-12, 2015.
[45] S. Hasegawa, S. Nishida, T. Yamashita, and H. Asahi, "Field electron emission from polycrystalline GaN nanorods," Journal of Ceramic Processing & Research, vol. 6, pp. 245-249, 2005.
[46] Y. Liu, S. Niu, Q. Yang, B. D. Klein, Y. S. Zhou, and Z. L. Wang, "Theoretical Study of Piezo‐phototronic Nano‐LEDs," Advanced Materials, vol. 26, pp. 7209-7216, 2014.
[47] A. Onodera, "Novel Ferroelectricity in II-VI Semiconductor ZnO," Ferroelectrics, vol. 267, pp. 131-137, 2002.
[48] H. Iwanaga, A. Kunishige, and S. Takeuchi, "Anisotropic thermal expansion in wurtzite-type crystals," Journal of Materials Science, vol. 35, pp. 2451-2454, 2000.
[49] M. H. Zhao, Z. L. Wang, and S. X. Mao, "Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope," Nano Letters, vol. 4, pp. 587-590, 2004.
[50] J. A. Christman, R. R. Woolcott Jr, A. I. Kingon, and R. J. Nemanich, "Piezoelectric measurements with atomic force microscopy," Applied Physics Letters, vol. 73, pp. 3851-3853, 1998.
[51] J. Curie and P. Curie, "Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées," Comptes rendus, vol. 91, pp. 294-295, 1880.
[52] A. Arnau and D. Soares, "Fundamentals of Piezoelectricity," in Piezoelectric Transducers and Applications, A. A. Vives, Ed., ed Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1-38, 2008.
[53] H. Linsheng, C. Dongdong, K. Qingzhao, L. Hongnan, and S. Gangbing, "Smart washer—a piezoceramic-based transducer to monitor looseness of bolted connection," Smart Materials and Structures, vol. 26, pp. 1-9, 2017.
[54] Z. Gao, J. Zhou, Y. Gu, P. Fei, Y. Hao, G. Bao, et al., "Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor," Journal of Applied Physics, vol. 105, pp. 1-6, 2009.
[55] Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science, vol. 312, pp. 242-246, 2006.
[56] R. Yu, S. Niu, C. Pan, and Z. L. Wang, "Piezotronic effect enhanced performance of schottky-contacted optical, gas, chemical and biological nanosensors," Nano Energy, vol. 14, pp. 312-339, 2015.
[57] K. C. Kao, "Ferroelectrics, Piezoelectrics, and Pyroelectrics," pp. 213-282, 2004.
[58] W. Wu, X. Wen, and Z. L. Wang, "Piezotronic Nanowire “Taxel” Gives Active/Adaptive Sense of Touch," 2013.
[59] P. Muralt, "Piezoelectric Films for Innovations in the Field of MEMS and Biosensors," in Piezoelectricity: Evolution and Future of a Technology, ed Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 351-376, 2008.
[60] K. Uchino, "Piezoelectric Motors and Transformers," in Piezoelectricity: Evolution and Future of a Technology, ed Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 257-277, 2008.
[61] Z. L. Wang, "Piezotronic and piezophototronic effects," The Journal of Physical Chemistry Letters, vol. 1, pp. 1388-1393, 2010.
[62] J. Tichý, J. Erhart, E. Kittinger*, and J. Přívratská, "Principles of Piezoelectricity," in Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials, ed Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1-14, 2010.
[63] R. E. Eitel, "NOVEL PIEZOELECTRIC CERAMICS: DEVELOPMENT OF HIGH TEMPERATURE, HIGH PERFORMANCE," Doctor, Department of Materials Science and Engineering, The Pennsylvania State University, 2003.
[64] Y. R. Ryu, T. S. Lee, J. A. Lubguban, A. B. Corman, H. W. White, J. H. Leem, et al., "Wide-band gap oxide alloy: BeZnO," Applied physics letters, vol. 88, pp. 1-2, 2006.
[65] J. Ishihara, A. Nakamura, S. Shigemori, T. Aoki, and J. Temmyo, "Zn1−xCdxO systems with visible band gaps," Applied Physics Letters, vol. 89, pp. 1-2, 2006.
[66] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, et al., "Band gap engineering based on MgxZn1−xO and CdyZn1−yO ternary alloy films," Applied Physics Letters, vol. 78, pp. 1237-1239, 2001.
[67] L. Kumari, W. Z. Li, C. H. Vannoy, R. M. Leblanc, and D. Z. Wang, "Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO," Ceramics International, vol. 35, pp. 3355-3364, 2009.
[68] R. C. Whited, C. J. Flaten, and W. C. Walker, "Exciton thermoreflectance of MgO and CaO," Solid State Communications, vol. 13, pp. 1903-1905, 1973.
[69] R. t. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, vol. 32, pp. 751-767, 1976.
[70] J. M. Zeng, H. Wang, S. X. Shang, Z. Wang, and M. Wang, "Preparation and characterization of epitaxial MgO thin film by atmospheric-pressure metalorganic chemical vapor deposition," Journal of crystal growth, vol. 169, pp. 474-479, 1996.
[71] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, et al., "MgxZn1−xO as a II–VI widegap semiconductor alloy," Applied Physics Letters, vol. 72, pp. 2466-2468, 1998.
[72] V. L. Solozhenko, A. N. Baranov, and V. Z. Turkevich, "High-pressure formation of MgxZn1−xO solid solutions with rock salt structure," Solid state communications, vol. 138, pp. 534-537, 2006.
[73] Y. Hou, Z. Mei, and X. Du, "Semiconductor ultraviolet photodetectors based on ZnO and MgxZn1− xO," Journal of Physics D: Applied Physics, vol. 47, pp. 1-25, 2014.
[74] N. W. Emanetoglu, S. N. Muthukumar, P. Wu, R. H. Wittstruck, Y. Chen, and Y. Lu, "MgxZn1-xO: a new piezoelectric material," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 50, pp. 537-543, 2003.
[75] A. Boonchun and W. R. Lambrecht, "Bond lengths, phase stability, and band gaps in MgxZn1−xO alloys," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 27, pp. 1717-1721, 2009.
[76] A. Schleife, M. Eisenacher, C. Rödl, F. Fuchs, J. Furthmüller, and F. Bechstedt, "Ab initio description of heterostructural alloys: Thermodynamic and structural properties of MgxZn1−xO and CdxZn1−xO," Physical Review B, vol. 81, pp. 1-15, 2010.
[77] E. R. Segnit and A. E. Holland, "The System MgO-ZnO-SiO2," Journal of the American Ceramic Society, vol. 48, pp. 409-413, 1965.
[78] M. S. Dresselhaus and I. L. Thomas, "Alternative energy technologies," Nature, vol. 414, pp. 332-337, 2001.
[79] P. Glynne-Jones and N. M. White, "Self-powered systems: a review of energy sources," Sensor review, vol. 21, pp. 91-98, 2001.
[80] E. Katz, A. F. Bückmann, and I. Willner, "Self-Powered Enzyme-Based Biosensors," Journal of the American Chemical Society, vol. 123, pp. 10752-10753, 2001.
[81] M. Goldfarb, E. J. Barth, M. A. Gogola, and J. A. Wehrmeyer, "Design and energetic characterization of a liquid-propellant-powered actuator for self-powered robots," IEEE/ASME Transactions on Mechatronics, vol. 8, pp. 254-262, 2003.
[82] F. R. Fan, W. Tang, and Z. L. Wang, "Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics," Advanced Materials, pp. 1-23, 2016.
[83] Z. L. Wang, "Nanogenerators and Nanopiezotronics," in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 371-374.
[84] N. S. Lewis, "Toward Cost-Effective Solar Energy Use," Science, vol. 315, pp. 798-801, 2007.
[85] Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, and Z. L. Wang, "Self-powered system with wireless data transmission," Nano letters, vol. 11, pp. 2572-2577, 2011.
[86] Z. L. Wang, X. Wang, J. Song, J. Liu, and Y. Gao, "Piezoelectric nanogenerators for self-powered nanodevices," IEEE Pervasive computing, vol. 7, pp. 49-55, 2008.
[87] G. Mantini, Y. Gao, A. D’Amico, C. Falconi, and Z. L. Wang, "Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire," Nano Research, vol. 2, pp. 624-629, 2009.
[88] R. Tao, G. Ardila, L. Montès, and M. Mouis, "Modeling of semiconducting piezoelectric nanowires for mechanical energy harvesting and mechanical sensing," Nano energy, vol. 14, pp. 62-76, 2015.
[89] J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, et al., "Carrier density and Schottky barrier on the performance of DC nanogenerator," Nano letters, vol. 8, pp. 328-332, 2008.
[90] H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, et al., "Control of electronic structure of graphene by various dopants and their effects on a nanogenerator," Journal of the American Chemical Society, vol. 132, pp. 15603-15609, 2010.
[91] B. Kumar and S. W. Kim, "Recent advances in power generation through piezoelectric nanogenerators," Journal of Materials Chemistry, vol. 21, pp. 18946-18958, 2011.
[92] B. Kumar and S. W. Kim, "Energy harvesting based on semiconducting piezoelectric ZnO nanostructures," Nano Energy, vol. 1, pp. 342-355, 2012.
[93] H. K. Park, K. Y. Lee, J. S. Seo, J. A. Jeong, H. K. Kim, D. Choi, et al., "Charge-Generating Mode Control in High-Performance Transparent Flexible Piezoelectric Nanogenerators," Advanced Functional Materials, vol. 21, pp. 1187-1193, 2011.
[94] A. Kaushal and D. Kaur, "Effect of Mg content on structural, electrical and optical properties of Zn1−xMgxO nanocomposite thin films," Solar Energy Materials and Solar Cells, vol. 93, pp. 193-198, 2009.
[95] L. D. Whittig and W. R. Allardice, "X-ray diffraction techniques," Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, pp. 331-362, 1986.
[96] L. Vegard, "Die Konstitution der Mischkristalle und die Raumfüllung der Atome," Zeitschrift für Physik, vol. 5, pp. 17-26, 1921.
[97] K. Shimada, N. Takahashi, Y. Nakagawa, T. Hiramatsu, and H. Kato, "Nonlinear characteristics of structural properties and spontaneous polarization in wurtzite MgxZn1−xO: A first-principles study," Physical Review B, vol. 88, p. 075203, 2013.
[98] J. S. Shiau, S. Brahma, C. P. Liu, and J. L. Huang, "Ultraviolet photodetectors based on MgZnO thin film grown by RF magnetron sputtering," Thin Solid Films, vol. 620, pp. 170-174, 2016.
[99] J. Chastain, R. C. King, and J. F. Moulder, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data: Physical Electronics Eden Prairie, MN, 1995.
[100] M. Wang, J. Yi, S. Yang, Z. Cao, X. Huang, Y. Li, et al., "Electrodeposition of Mg doped ZnO thin film for the window layer of CIGS solar cell," Applied Surface Science, vol. 382, pp. 217-224, 2016.
[101] J. Tauc and A. Menth, "States in the gap," Journal of Non-Crystalline Solids, vol. 8, pp. 569-585, 1972.
[102] S. T. Tan, B. J. Chen, X. W. Sun, X. Hu, X. H. Zhang, and S. J. Chua, "Properties of polycrystalline ZnO thin films by metal organic chemical vapor deposition," Journal of Crystal Growth, vol. 281, pp. 571-576, 2005.
[103] X. Wang, K. Saito, T. Tanaka, M. Nishio, T. Nagaoka, M. Arita, et al., "Energy band bowing parameter in MgZnO alloys," Applied Physics Letters, vol. 107, pp. 1-5, 2015.
[104] Y. Ke, S. Lany, J. J. Berry, J. D. Perkins, P. A. Parilla, A. Zakutayev, et al., "Enhanced Electron Mobility Due to Dopant‐Defect Pairing in Conductive ZnMgO," Advanced Functional Materials, vol. 24, pp. 2875-2882, 2014.
[105] Y. Hu, B. Cai, Z. Hu, Y. Liu, S. Zhang, and H. Zeng, "The impact of Mg content on the structural, electrical and optical properties of MgZnO alloys: a first principles study," Current Applied Physics, vol. 15, pp. 423-428, 2015.
[106] Y. G. Zhang, H. Y. He, and B. C. Pan, "Structural phase transition and the related electronic and optical properties of MgZnO nanowires," The European Physical Journal B-Condensed Matter and Complex Systems, vol. 80, pp. 395-400, 2011.
[107] A. Dal Corso, M. Posternak, R. Resta, and A. Baldereschi, "Ab initio study of piezoelectricity and spontaneous polarization in ZnO," Physical Review B, vol. 50, pp. 10715-10721, 1994.
[108] S. B. Krupanidhi, "Dielectric properties of c-axis oriented Zn1−xMgxO thin films grown by multimagnetron sputtering," Applied physics letters, 2006.
[109] A. Onodera, N. Tamaki, K. Jin, and H. Yamashita, "Ferroelectric Properties in Piezoelectric Semiconductor Zn1-xMxO (M= Li, Mg)," Japanese journal of applied physics, vol. 36, pp. 6008-6011, 1997.
[110] M. K. Gupta and B. Kumar, "Enhanced ferroelectric, dielectric and optical behavior in Li-doped ZnO nanorods," Journal of Alloys and Compounds, vol. 509, pp. L208-L212, 2011.
[111] A. Onodera, N. Tamaki, K. Yuko, S. Takuya, and Y. Haruyasu, "Dielectric Activity and Ferroelectricity in Piezoelectric Semiconductor Li-Doped ZnO," Japanese Journal of Applied Physics, vol. 35, p. 5160, 1996.
[112] X. B. Wang, C. Song, D. M. Li, K. W. Geng, F. Zeng, and F. Pan, "The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film," Applied Surface Science, vol. 253, pp. 1639-1643, 2006.
[113] K. Nakamura, S. Higuchi, and T. Ohnuma, "Enhancement of piezoelectric constants induced by cation-substitution and two-dimensional strain effects on ZnO predicted by density functional perturbation theory," Journal of Applied Physics, vol. 119, pp. 1-10, 2016.
[114] Y. Zhang, C. H. Liu, J. B. Liu, J. Xiong, J. G. Liu, K. Zhang, et al., "Lattice strain induced remarkable enhancement in piezoelectric performance of ZnO-based flexible nanogenerators," ACS applied materials & interfaces, vol. 8, pp. 1381-1387, 2016.
[115] J. Molarius, J. Kaitila, T. Pensala, and M. Ylilammi, "Piezoelectric ZnO films by rf sputtering," Journal of Materials Science: Materials in Electronics, vol. 14, pp. 431-435, 2003.
[116] S. Trolier-McKinstry and P. Muralt, "Thin film piezoelectrics for MEMS," Journal of Electroceramics, vol. 12, pp. 7-17, 2004.
[117] F. Martin, P. Muralt, M. A. Dubois, and A. Pezous, "Thickness dependence of the properties of highly c-axis textured AlN thin films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 22, pp. 361-365, 2004.
[118] H. Liu, F. Zeng, G. Tang, and F. Pan, "Enhancement of piezoelectric response of diluted Ta doped AlN," Applied Surface Science, vol. 270, pp. 225-230, 2013.
[119] C. H. Wang, W. S. Liao, Z. H. Lin, N. J. Ku, Y. C. Li, Y. C. Chen, et al., "Optimization of the Output Efficiency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration," Advanced Energy Materials, vol. 4, pp. 1-7, 2014.
[120] A. Abduev, A. Akmedov, A. Asvarov, and A. Chiolerio, "A revised growth model for transparent conducting Ga doped ZnO films: improving crystallinity by means of buffer layers," Plasma Processes and Polymers, vol. 12, pp. 725-733, 2015.
[121] B. Yin, Y. Qiu, H. Zhang, J. Lei, Y. Chang, J. Ji, et al., "Piezoelectric performance enhancement of ZnO flexible nanogenerator by a NiO–ZnO p–n junction formation," Nano Energy, vol. 14, pp. 95-101, 2015.
[122] K. Y. Lee, J. Bae, S. Kim, J. H. Lee, G. C. Yoon, M. K. Gupta, et al., "Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators," Nano Energy, vol. 8, pp. 165-173, 2014.
[123] H. Kim, S. M. Kim, H. Son, H. Kim, B. Park, J. Ku, et al., "Enhancement of piezoelectricity via electrostatic effects on a textile platform," Energy & Environmental Science, vol. 5, pp. 8932-8936, 2012.
[124] Y. Hu, L. Lin, Y. Zhang, and Z. L. Wang, "Replacing a battery by a nanogenerator with 20 V output," Advanced Materials, vol. 24, pp. 110-114, 2012.
[125] C. Pan, Z. Li, W. Guo, J. Zhu, and Z. L. Wang, "Fiber‐based hybrid nanogenerators for/as self‐powered systems in biological liquid," Angewandte Chemie International Edition, vol. 50, pp. 11192-11196, 2011.
[126] T. T. Pham, K. Y. Lee, J.-H. Lee, K.-H. Kim, K.-S. Shin, M. K. Gupta, et al., "Reliable operation of a nanogenerator under ultraviolet light via engineering piezoelectric potential," Energy & Environmental Science, vol. 6, pp. 841-846, 2013.