簡易檢索 / 詳目顯示

研究生: 邱語彤
Chiu, Yu-Tung
論文名稱: 從多能性到血液內皮細胞非編碼轉錄組的敏感分析
Sensitive profiling of noncoding transcriptome from pluripotency to hemogenic endothelium
指導教授: 江伯敏
Chiang, Po-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 76
中文關鍵詞: 高通量定序少量細胞非編碼RNA人類多功能幹細胞
外文關鍵詞: High-throughput sequencing, low cell number, non-coding RNA, human pluripotency stem cell
相關次數: 點閱:93下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞中除了信使RNA (mRNA) 之外,非編碼RNA (ncRNA) 在細胞中也扮演重要的角色,其中miRNA的表達會調控細胞不同的功能之外,也會影響mRNA的穩定性及基因組 (genome) 的結構,目前有許多種方法可以用來偵測或分析細胞中的miRNA,如定量反轉錄聚合酶鏈反應 (qRT-PCR)、基因晶片 (microarray) 以及次世代定序 (NGS),然而這些方法的敏感度並沒有很高,所以為全面了解不同細胞類型的功能及特徵,我們建立了敏感的偵測系統進行分析。我們透過多聚腺苷酸化 (polyadenylation) 同時分析細胞中的mRNA及ncRNA,接著我們調整了buffer中的離子濃度,使偵測系統的靈敏度增加。我們將此系統應用於少量或單顆的HEK293細胞及人類多功能幹細胞 (hPSC),並以qRT-PCR及高通量定序來確認此系統的靈敏度。根據結果發現我們可以透過此系統觀察少量或單顆細胞中不同類型的RNA,最後透過qRT-PCR驗證HEK293細胞及hPSC細胞的選擇性富集,另外我們也發現此系統除了可以偵測miRNA之外,同時還可以分析其他ncRNA及mRNA。總而言之,我們建立了一個簡單且敏感的偵測系統,可以同時量化少量細胞數的ncRNA及mRNA。

    SUMMARY
    In addition to messenger RNA (mRNA), non-coding RNA (ncRNA) plays an important role in cells. miRNAs’ function is to regulate different function of cells, stability of mRNA and genome structure. There are many ways to detect or analyze miRNAs, such as quantitative reverse transcription polymerase chain reaction (qRT-PCR), microarray, and next-generation sequencing (NGS). However, these methods have low sensitivity and require large numbers of cells to detect miRNA. So we wanted to find a more sensitive detection system. We used polyadenylation to analyze mRNA and ncRNA in cells, simultaneously. Then we adjusted the ion concentration in buffer to increase the sensitivity of the detection system. We applied this system to low number or single HEK293 cells and human pluripotency stem cells (hPSCs), and then confirmed the sensitivity of the system with qRT-PCR and high throughput sequencing. According to the results, we can observe the different type of RNA in low number or single cells. Finally, the selective enrichment of HEK293 cells and hPSC cells was verified by qRT-PCR. We found that the system can detect miRNA in addition, but also can analyze other ncRNA and mRNA. Overall, we have established a simple and sensitive way to concurrently quantify both mRNA and ncRNA in low cell number for qRT-PCR and high throughput sequencing.

    摘要 I 英文摘要 II 誌謝 V 目錄 VI 圖表目錄 VIII 緒論 1 Non-coding RNA的種類 1 microRNAs的發現 2 microRNAs的生合成 ─ 細胞核 4 microRNAs的生合成 ─ 細胞質 5 microRNAs如何調控基因表達 7 microRNAs的偵測方式 8 microRNAs與腫瘤的關係 10 microRNAs與維持細胞狀態的關係 11 microRNAs與細胞分化的關係 13 microRNAs與內皮細胞的關係 15 材料與方法 18 材料清單 18 Small RNA library 建立 18 用PEG / NaCl將DNA進行純化 19 TBE UREA PAGE及染色 19 製備library及高通量定序 19 HEK293FT及HEK293T的細胞培養、library製備及定序 20 Bioinformatics 20 定量反轉錄聚合酶鏈反應 (qRT-PCR) 21 結果 22 確認使用的buffer 22 確認buffer中離子使用之濃度 24 利用少量細胞或單顆細胞的total RNA建立library 27 利用少量或單顆細胞進行transcriptome的library建立及定序 34 比較不同方法所測得的miRNA的差異 43 確認進行RNA-seq的library大小 47 討論 55 此系統的應用 55 Library建立方式優缺點比較 57 與現今single cell RNA偵測的方法比較 60 此系統的限制及解決方法 62 PSC及HEK293差異表達基因 65 參考文獻 68 圖 一、確認RTbuffer也可以進行template的poly A tail產生。 23 圖 二、確認buffer中離子使用之濃度。 26 圖 三、利用少量或單顆細胞的RNA可以有效偵測miRNA。 31 圖 四、利用少量或單顆細胞進行transcriptome的library建立及定序。 38 圖 五、比較不同方法所測得的miRNA表達量的差異。 46 圖 六、確認進行RNA-seq的library大小及富含的miRNA。 52 表 一、PSC細胞定序結果分析 40 表 二、分析unannotated前40名富含的RNA種類 41 表 三、HEK293細胞定序結果分析 54

    1 Jeffares, D. C., Poole, A. M. & Penny, D. Relics from the RNA world. Journal of molecular evolution 46, 18-36 (1998).
    2 Palazzo, A. F. & Lee, E. S. Non-coding RNA: what is functional and what is junk? Frontiers in genetics 6, 2, doi:10.3389/fgene.2015.00002 (2015).
    3 Mercer, T. R. & Mattick, J. S. Structure and function of long noncoding RNAs in epigenetic regulation. Nature structural & molecular biology 20, 300-307, doi:10.1038/nsmb.2480 (2013).
    4 Cui, X. S., Zhang, D. X., Ko, Y. G. & Kim, N. H. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos. Biochemical and biophysical research communications 379, 390-394, doi:10.1016/j.bbrc.2008.12.148 (2009).
    5 Carthew, R. W. & Sontheimer, E. J. Origins and Mechanisms of miRNAs and siRNAs. Cell 136, 642-655, doi:10.1016/j.cell.2009.01.035 (2009).
    6 Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089-1103, doi:10.1016/j.cell.2007.01.043 (2007).
    7 Collins, L. J., Schönfeld, B. & Chen, X. S. in Handbook of Epigenetics 49-61 (Academic Press, 2011).
    8 Collins, L. & Penny, D. Complex spliceosomal organization ancestral to extant eukaryotes. Molecular biology and evolution 22, 1053-1066, doi:10.1093/molbev/msi091 (2005).
    9 Kaikkonen, M. U., Lam, M. T. & Glass, C. K. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovascular research 90, 430-440, doi:10.1093/cvr/cvr097 (2011).
    10 Ardekani, A. M. & Naeini, M. M. The Role of MicroRNAs in Human Diseases. Avicenna journal of medical biotechnology 2, 161-179 (2010).
    11 Hydbring, P. & Badalian-Very, G. Clinical applications of microRNAs [version 1; referees: 2 approved]. Vol. 2 (2013).
    12 Kosaka, N., Iguchi, H. & Ochiya, T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer science 101, 2087-2092, doi:10.1111/j.1349-7006.2010.01650.x (2010).
    13 Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America 105, 10513-10518, doi:10.1073/pnas.0804549105 (2008).
    14 Zhao, H. et al. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PloS one 5, e13735, doi:10.1371/journal.pone.0013735 (2010).
    15 Boeri, M. et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proceedings of the National Academy of Sciences of the United States of America 108, 3713-3718, doi:10.1073/pnas.1100048108 (2011).
    16 Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854 (1993).
    17 Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906, doi:10.1038/35002607 (2000).
    18 Chalfie, M., Horvitz, H. R. & Sulston, J. E. Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24, 59-69 (1981).
    19 Horvitz, H. R. & Sulston, J. E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96, 435-454 (1980).
    20 Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855-862 (1993).
    21 Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K. & Slack, F. J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. Genes & development 18, 132-137, doi:10.1101/gad.1165404 (2004).
    22 Roush, S. & Slack, F. J. The let-7 family of microRNAs. Trends in cell biology 18, 505-516, doi:10.1016/j.tcb.2008.07.007 (2008).
    23 Abbott, A. L. et al. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Developmental cell 9, 403-414, doi:10.1016/j.devcel.2005.07.009 (2005).
    24 Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America 102, 13944-13949, doi:10.1073/pnas.0506654102 (2005).
    25 Yang, B. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature medicine 13, 486-491, doi:10.1038/nm1569 (2007).
    26 Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences of the United States of America 103, 12481-12486, doi:10.1073/pnas.0605298103 (2006).
    27 Kitada, S. et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with In vitro and In vivo chemoresponses. Blood 91, 3379-3389 (1998).
    28 Chen, J. F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature genetics 38, 228-233, doi:10.1038/ng1725 (2006).
    29 Nottrott, S., Simard, M. J. & Richter, J. D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nature structural & molecular biology 13, 1108-1114, doi:10.1038/nsmb1173 (2006).
    30 Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86-89, doi:10.1038/35040556 (2000).
    31 Sempere, L. F. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome biology 5, R13, doi:10.1186/gb-2004-5-3-r13 (2004).
    32 Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127, 1193-1207, doi:10.1016/j.cell.2006.10.040 (2006).
    33 Takamizawa, J. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer research 64, 3753-3756, doi:10.1158/0008-5472.can-04-0637 (2004).
    34 Shell, S. et al. Let-7 expression defines two differentiation stages of cancer. Proceedings of the National Academy of Sciences of the United States of America 104, 11400-11405, doi:10.1073/pnas.0704372104 (2007).
    35 Nam, E. J. et al. MicroRNA expression profiles in serous ovarian carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 14, 2690-2695, doi:10.1158/1078-0432.ccr-07-1731 (2008).
    36 Schultz, J., Lorenz, P., Gross, G., Ibrahim, S. & Kunz, M. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell research 18, 549-557, doi:10.1038/cr.2008.45 (2008).
    37 Maqbool, R. & Ul Hussain, M. MicroRNAs and human diseases: diagnostic and therapeutic potential. Cell and tissue research 358, 1-15, doi:10.1007/s00441-013-1787-3 (2014).
    38 Ul Hussain, M. Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action. Cell and tissue research 349, 405-413, doi:10.1007/s00441-012-1438-0 (2012).
    39 Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. The EMBO journal 23, 4051-4060, doi:10.1038/sj.emboj.7600385 (2004).
    40 Borchert, G. M., Lanier, W. & Davidson, B. L. RNA polymerase III transcribes human microRNAs. Nature structural & molecular biology 13, 1097-1101, doi:10.1038/nsmb1167 (2006).
    41 Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes & development 18, 3016-3027, doi:10.1101/gad.1262504 (2004).
    42 Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75-84, doi:10.1016/j.cell.2008.10.053 (2009).
    43 Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89-100, doi:10.1016/j.cell.2007.06.028 (2007).
    44 Lin, S. L., Chang, D., Wu, D. Y. & Ying, S. Y. A novel RNA splicing-mediated gene silencing mechanism potential for genome evolution. Biochemical and biophysical research communications 310, 754-760 (2003).
    45 Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887-901, doi:10.1016/j.cell.2006.03.043 (2006).
    46 Curtis, H. J., Sibley, C. R. & Wood, M. J. Mirtrons, an emerging class of atypical miRNA. Wiley interdisciplinary reviews. RNA 3, 617-632, doi:10.1002/wrna.1122 (2012).
    47 Kohler, A. & Hurt, E. Exporting RNA from the nucleus to the cytoplasm. Nature reviews. Molecular cell biology 8, 761-773, doi:10.1038/nrm2255 (2007).
    48 Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & development 17, 3011-3016, doi:10.1101/gad.1158803 (2003).
    49 Kutay, U., Bischoff, F. R., Kostka, S., Kraft, R. & Gorlich, D. Export of importin alpha from the nucleus is mediated by a specific nuclear transport factor. Cell 90, 1061-1071 (1997).
    50 Brownawell, A. M. & Macara, I. G. Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins. The Journal of cell biology 156, 53-64, doi:10.1083/jcb.200110082 (2002).
    51 Forstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS biology 3, e236, doi:10.1371/journal.pbio.0030236 (2005).
    52 Provost, P. et al. Ribonuclease activity and RNA binding of recombinant human Dicer. The EMBO journal 21, 5864-5874 (2002).
    53 Macrae, I. J. et al. Structural basis for double-stranded RNA processing by Dicer. Science (New York, N.Y.) 311, 195-198, doi:10.1126/science.1121638 (2006).
    54 Fareh, M. et al. TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nature Communications 7, 13694, doi:10.1038/ncomms13694 (2016).
    55 Haase, A. D. et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO reports 6, 961-967, doi:10.1038/sj.embor.7400509 (2005).
    56 Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744, doi:10.1038/nature03868 (2005).
    57 Chakravarthy, S., Sternberg, S. H., Kellenberger, C. A. & Doudna, J. A. Substrate-specific kinetics of Dicer-catalyzed RNA processing. Journal of molecular biology 404, 392-402, doi:10.1016/j.jmb.2010.09.030 (2010).
    58 Wilson, R. C. et al. Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Molecular cell 57, 397-407, doi:10.1016/j.molcel.2014.11.030 (2015).
    59 Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199-208 (2003).
    60 Tahbaz, N. et al. Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO reports 5, 189-194, doi:10.1038/sj.embor.7400070 (2004).
    61 MacRae, I. J., Ma, E., Zhou, M., Robinson, C. V. & Doudna, J. A. In vitro reconstitution of the human RISC-loading complex. Proceedings of the National Academy of Sciences of the United States of America 105, 512-517, doi:10.1073/pnas.0710869105 (2008).
    62 Wang, B. et al. Distinct passenger strand and mRNA cleavage activities of human Argonaute proteins. Nature structural & molecular biology 16, 1259-1266, doi:10.1038/nsmb.1712 (2009).
    63 Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes & development 18, 1655-1666, doi:10.1101/gad.1210204 (2004).
    64 Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Molecular cell 15, 185-197, doi:10.1016/j.molcel.2004.07.007 (2004).
    65 Chak, L. L. & Okamura, K. Argonaute-dependent small RNAs derived from single-stranded, non-structured precursors. Frontiers in genetics 5, 172, doi:10.3389/fgene.2014.00172 (2014).
    66 Bosse, G. D. & Simard, M. J. A new twist in the microRNA pathway: Not Dicer but Argonaute is required for a microRNA production. Cell research 20, 735-737, doi:10.1038/cr.2010.83 (2010).
    67 Humphreys, D. T., Westman, B. J., Martin, D. I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proceedings of the National Academy of Sciences of the United States of America 102, 16961-16966, doi:10.1073/pnas.0506482102 (2005).
    68 Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. Molecular cell 21, 533-542, doi:10.1016/j.molcel.2006.01.031 (2006).
    69 Orom, U. A., Nielsen, F. C. & Lund, A. H. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Molecular cell 30, 460-471, doi:10.1016/j.molcel.2008.05.001 (2008).
    70 Pillai, R. S. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science (New York, N.Y.) 309, 1573-1576, doi:10.1126/science.1115079 (2005).
    71 Lytle, J. R., Yario, T. A. & Steitz, J. A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proceedings of the National Academy of Sciences of the United States of America 104, 9667-9672, doi:10.1073/pnas.0703820104 (2007).
    72 Vasudevan, S. Posttranscriptional Upregulation by MicroRNAs. Wiley Interdisciplinary Reviews: RNA 3, 311-330, doi:10.1002/wrna.121 (2012).
    73 Ding, L. & Han, M. GW182 family proteins are crucial for microRNA-mediated gene silencing. Trends in cell biology 17, 411-416, doi:10.1016/j.tcb.2007.06.003 (2007).
    74 Sen, G. L. & Blau, H. M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nature cell biology 7, 633-636, doi:10.1038/ncb1265 (2005).
    75 Wu, L., Fan, J. & Belasco, J. G. MicroRNAs direct rapid deadenylation of mRNA. Proceedings of the National Academy of Sciences of the United States of America 103, 4034-4039, doi:10.1073/pnas.0510928103 (2006).
    76 Mattick, J. S. & Makunin, I. V. Small regulatory RNAs in mammals. Human Molecular Genetics 14, R121-R132, doi:10.1093/hmg/ddi101 (2005).
    77 Weill, L., Belloc, E., Bava, F.-A. & Mendez, R. Translational control by changes in poly(A) tail length: recycling mRNAs. Nature structural & molecular biology 19, 577-585 (2012).
    78 Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Developmental biology 216, 671-680, doi:10.1006/dbio.1999.9523 (1999).
    79 Wu, L. & Belasco, J. G. Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Molecular and cellular biology 25, 9198-9208, doi:10.1128/mcb.25.21.9198-9208.2005 (2005).
    80 Castoldi, M. et al. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA (New York, N.Y.) 12, 913-920, doi:10.1261/rna.2332406 (2006).
    81 Liu, Y. et al. MicroRNA-200a regulates Grb2 and suppresses differentiation of mouse embryonic stem cells into endoderm and mesoderm. PloS one 8, e68990, doi:10.1371/journal.pone.0068990 (2013).
    82 Hunt, E. A., Broyles, D., Head, T. & Deo, S. K. MicroRNA Detection: Current Technology and Research Strategies. Annual review of analytical chemistry (Palo Alto, Calif.) 8, 217-237, doi:10.1146/annurev-anchem-071114-040343 (2015).
    83 Li, W. & Ruan, K. MicroRNA detection by microarray. Analytical and bioanalytical chemistry 394, 1117-1124, doi:10.1007/s00216-008-2570-2 (2009).
    84 Yin, J. Q., Zhao, R. C. & Morris, K. V. Profiling microRNA expression with microarrays. Trends in biotechnology 26, 70-76, doi:10.1016/j.tibtech.2007.11.007 (2008).
    85 Castoldi, M., Collier, P., Nolan, T. & Benes, V. in PCR Technology 307-322 (CRC Press, 2013).
    86 Reichenstein, I., Aizenberg, N., Goshen, M., Bentwich, Z. & Avni, Y. S. A novel qPCR assay for viral encoded microRNAs. Journal of virological methods 163, 323-328, doi:10.1016/j.jviromet.2009.10.018 (2010).
    87 Mardis, E. R. Next-generation DNA sequencing methods. Annual review of genomics and human genetics 9, 387-402, doi:10.1146/annurev.genom.9.081307.164359 (2008).
    88 Baker, M. MicroRNA profiling: separating signal from noise. Nature methods 7, 687-692, doi:10.1038/nmeth0910-687 (2010).
    89 Bueno, M. J. & Malumbres, M. MicroRNAs and the cell cycle. Biochimica et biophysica acta 1812, 592-601, doi:10.1016/j.bbadis.2011.02.002 (2011).
    90 Neuman, E., Sellers, W. R., McNeil, J. A., Lawrence, J. B. & Kaelin, W. G., Jr. Structure and partial genomic sequence of the human E2F1 gene. Gene 173, 163-169 (1996).
    91 Diaz, R. et al. Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes, chromosomes & cancer 47, 794-802, doi:10.1002/gcc.20580 (2008).
    92 Wang, Q. et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proceedings of the National Academy of Sciences of the United States of America 105, 2889-2894, doi:10.1073/pnas.0800178105 (2008).
    93 Miller, T. E. et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. The Journal of biological chemistry 283, 29897-29903, doi:10.1074/jbc.M804612200 (2008).
    94 Calin, G. A. et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 99, 15524-15529, doi:10.1073/pnas.242606799 (2002).
    95 Calin, G. A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proceedings of the National Academy of Sciences of the United States of America 101, 11755-11760, doi:10.1073/pnas.0404432101 (2004).
    96 Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America 101, 2999-3004, doi:10.1073/pnas.0307323101 (2004).
    97 Yang, Y. et al. Comprehensive Expression Profiling and Functional Network Analysis of p53-Regulated MicroRNAs in HepG2 Cells Treated with Doxorubicin. PloS one 11, e0149227, doi:10.1371/journal.pone.0149227 (2016).
    98 He, L. et al. A microRNA component of the p53 tumour suppressor network. Nature 447, 1130-1134, doi:10.1038/nature05939 (2007).
    99 Pichiorri, F. et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer cell 18, 367-381, doi:10.1016/j.ccr.2010.09.005 (2010).
    100 Misso, G. et al. Mir-34: a new weapon against cancer? Molecular therapy. Nucleic acids 3, e194, doi:10.1038/mtna.2014.47 (2014).
    101 Kaller, M. et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Molecular & cellular proteomics : MCP 10, M111.010462, doi:10.1074/mcp.M111.010462 (2011).
    102 Hu, H., Du, L., Nagabayashi, G., Seeger, R. C. & Gatti, R. A. ATM is down-regulated by N-Myc-regulated microRNA-421. Proceedings of the National Academy of Sciences of the United States of America 107, 1506-1511, doi:10.1073/pnas.0907763107 (2010).
    103 Guo, W. T. et al. Suppression of epithelial-mesenchymal transition and apoptotic pathways by miR-294/302 family synergistically blocks let-7-induced silencing of self-renewal in embryonic stem cells. Cell death and differentiation 22, 1158-1169, doi:10.1038/cdd.2014.205 (2015).
    104 Jung, C. J. et al. Epigenetic modulation of miR-122 facilitates human embryonic stem cell self-renewal and hepatocellular carcinoma proliferation. PloS one 6, e27740, doi:10.1371/journal.pone.0027740 (2011).
    105 Wang, G. et al. Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proceedings of the National Academy of Sciences of the United States of America 110, 2858-2863, doi:10.1073/pnas.1212769110 (2013).
    106 Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890, doi:10.1016/j.cell.2009.11.007 (2009).
    107 Christensen, D. R., Calder, P. C. & Houghton, F. D. GLUT3 and PKM2 regulate OCT4 expression and support the hypoxic culture of human embryonic stem cells. Scientific reports 5, 17500, doi:10.1038/srep17500 (2015).
    108 Xu, Q. et al. MicroRNA-122 affects cell aggressiveness and apoptosis by targeting PKM2 in human hepatocellular carcinoma. Oncology reports 34, 2054-2064, doi:10.3892/or.2015.4175 (2015).
    109 Chai, S. et al. Octamer 4/microRNA-1246 signaling axis drives Wnt/beta-catenin activation in liver cancer stem cells. 64, 2062-2076, doi:10.1002/hep.28821 (2016).
    110 Nakaoka, T. et al. The cluster microRNAs miR-194 and miR-215 suppress the tumorigenicity of intestinal tumor organoids. Cancer science, doi:10.1111/cas.13165 (2017).
    111 Kong, Q., Chen, X. S., Tian, T., Xia, X. Y. & Xu, P. MicroRNA-194 suppresses prostate cancer migration and invasion by downregulating human nuclear distribution protein. Oncology reports 37, 803-812, doi:10.3892/or.2016.5305 (2017).
    112 Zhang, S. et al. Wnt/beta-catenin signaling pathway upregulates c-Myc expression to promote cell proliferation of P19 teratocarcinoma cells. Anatomical record (Hoboken, N.J. : 2007) 295, 2104-2113, doi:10.1002/ar.22592 (2012).
    113 Baker, A.-M., Graham, T. A., Elia, G., Wright, N. A. & Rodriguez-Justo, M. Characterization of LGR5 stem cells in colorectal adenomas and carcinomas. Scientific reports 5, 8654, doi:10.1038/srep08654 (2015).
    114 Samandari, N. et al. Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus. 60, 354-363, doi:10.1007/s00125-016-4156-4 (2017).
    115 Girard, M., Jacquemin, E., Munnich, A., Lyonnet, S. & Henrion-Caude, A. miR-122, a paradigm for the role of microRNAs in the liver. Journal of hepatology 48, 648-656, doi:10.1016/j.jhep.2008.01.019 (2008).
    116 Keller, D. M., Clark, E. A. & Goodman, R. H. Regulation of microRNA-375 by cAMP in pancreatic beta-cells. Molecular endocrinology (Baltimore, Md.) 26, 989-999, doi:10.1210/me.2011-1205 (2012).
    117 Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111-1124, doi:10.1016/j.cell.2006.04.031 (2006).
    118 Tsai, W. C. et al. MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology (Baltimore, Md.) 49, 1571-1582, doi:10.1002/hep.22806 (2009).
    119 Miller, A. M. et al. MiR-155 Has a Protective Role in the Development of Non-Alcoholic Hepatosteatosis in Mice. PloS one 8, e72324, doi:10.1371/journal.pone.0072324 (2013).
    120 Ishibashi, M. et al. Knock-down of the oxysterol receptor LXRalpha impairs cholesterol efflux in human primary macrophages: lack of compensation by LXRbeta activation. Biochemical pharmacology 86, 122-129, doi:10.1016/j.bcp.2012.12.024 (2013).
    121 Wang, F. et al. A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis. Nucleic acids research 42, 442-457, doi:10.1093/nar/gkt848 (2014).
    122 Pospisil, V. et al. The Oncogenic Mir-17-92 MicroRNA Cluster Is Inhibited by EGR2 During Macrophage Differentiation Via JARID1b-Mediated Histone 3 Lysine 4 Demethylation. Blood 116, 390 (2015).
    123 Rosenbauer, F. & Tenen, D. G. Transcription factors in myeloid development: balancing differentiation with transformation. Nature reviews. Immunology 7, 105-117, doi:10.1038/nri2024 (2007).
    124 Pospisil, V. et al. Epigenetic silencing of the oncogenic miR-17-92 cluster during PU.1-directed macrophage differentiation. The EMBO journal 30, 4450-4464, doi:10.1038/emboj.2011.317 (2011).
    125 Merkerova, M., Belickova, M. & Bruchova, H. Differential expression of microRNAs in hematopoietic cell lineages. European journal of haematology 81, 304-310, doi:10.1111/j.1600-0609.2008.01111.x (2008).
    126 Katzerke, C. et al. Transcription factor C/EBPalpha-induced microRNA-30c inactivates Notch1 during granulopoiesis and is downregulated in acute myeloid leukemia. Blood 122, 2433-2442, doi:10.1182/blood-2012-12-472183 (2013).
    127 Saunders, L. R. et al. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging 2, 415-431, doi:10.18632/aging.100176 (2010).
    128 Makeyev, E. V., Zhang, J., Carrasco, M. A. & Maniatis, T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular cell 27, 435-448, doi:10.1016/j.molcel.2007.07.015 (2007).
    129 Shenoy, A., Danial, M. & Blelloch, R. H. Let-7 and miR-125 cooperate to prime progenitors for astrogliogenesis. The EMBO journal 34, 1180-1194, doi:10.15252/embj.201489504 (2015).
    130 Zhao, C., Sun, G., Li, S. & Shi, Y. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nature structural & molecular biology 16, 365-371, doi:10.1038/nsmb.1576 (2009).
    131 Linares, A. J. et al. The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. 4, e09268, doi:10.7554/eLife.09268 (2015).
    132 Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature cell biology 10, 987-993, doi:10.1038/ncb1759 (2008).
    133 Chen, X. et al. The role of miR-497-5p in myofibroblast differentiation of LR-MSCs and pulmonary fibrogenesis. Scientific reports 7, 40958, doi:10.1038/srep40958 (2017).
    134 Gamez, B., Rodriguez-Carballo, E., Bartrons, R., Rosa, J. L. & Ventura, F. MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability. The Journal of biological chemistry 288, 14264-14275, doi:10.1074/jbc.M112.432104 (2013).
    135 Zhang, H. et al. MicroRNA-455 regulates brown adipogenesis via a novel HIF1an-AMPK-PGC1alpha signaling network. EMBO reports 16, 1378-1393, doi:10.15252/embr.201540837 (2015).
    136 Takahashi, C. et al. Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proceedings of the National Academy of Sciences of the United States of America 95, 13221-13226 (1998).
    137 Shindo, K. et al. Osteogenic differentiation of the mesenchymal progenitor cells, Kusa is suppressed by Notch signaling. Experimental cell research 290, 370-380 (2003).
    138 Khoo, C. P. et al. miR-193a-3p interaction with HMGB1 downregulates human endothelial cell proliferation and migration. Scientific reports 7, 44137, doi:10.1038/srep44137 (2017).
    139 Wu, R. et al. MicroRNA-497 Induces Apoptosis and Suppresses Proliferation via the Bcl-2/Bax-Caspase9-Caspase3 Pathway and Cyclin D2 Protein in HUVECs. PloS one 11, e0167052, doi:10.1371/journal.pone.0167052 (2016).
    140 Jiang, R. et al. Hypoxic trophoblast HMGB1 induces endothelial cell hyperpermeability via the TRL-4/caveolin-1 pathway. Journal of immunology (Baltimore, Md. : 1950) 193, 5000-5012, doi:10.4049/jimmunol.1303445 (2014).
    141 Guerrero, A. D., Schmitz, I., Chen, M. & Wang, J. Promotion of Caspase Activation by Caspase-9-mediated Feedback Amplification of Mitochondrial Damage. Journal of clinical & cellular immunology 3, doi:10.4172/2155-9899.1000126 (2012).
    142 Liang, J. et al. Inhibition of microRNA-495 Enhances Therapeutic Angiogenesis of Human Induced Pluripotent Stem Cells. Stem cells (Dayton, Ohio), doi:10.1002/stem.2477 (2016).
    143 Luo, Z. et al. MicroRNA-200C and -150 play an important role in endothelial cell differentiation and vasculogenesis by targeting transcription repressor ZEB1. Stem cells (Dayton, Ohio) 31, 1749-1762, doi:10.1002/stem.1448 (2013).
    144 Nimmo, R. et al. MiR-142-3p controls the specification of definitive hemangioblasts during ontogeny. Developmental cell 26, 237-249, doi:10.1016/j.devcel.2013.06.023 (2013).
    145 Roy, L. et al. MiR-24 is required for hematopoietic differentiation of mouse embryonic stem cells. PLoS genetics 11, e1004959, doi:10.1371/journal.pgen.1004959 (2015).
    146 Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science (New York, N.Y.) 303, 83-86, doi:10.1126/science.1091903 (2004).
    147 Griswold-Prenner, I., Kamibayashi, C., Maruoka, E. M., Mumby, M. C. & Derynck, R. Physical and functional interactions between type I transforming growth factor beta receptors and Balpha, a WD-40 repeat subunit of phosphatase 2A. Molecular and cellular biology 18, 6595-6604 (1998).
    148 Tabe, Y. et al. Pro-Survival Effects of TGF-β1 Are Associated with Molecular Signaling Changes of ERK, FLI-1, and CD44 in AML Cells. Blood 124, 2337-2337 (2014).
    149 Chan, M. C. et al. Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. The EMBO journal 29, 559-573, doi:10.1038/emboj.2009.370 (2010).
    150 Liu, B. et al. Disruption of Smad5 gene leads to enhanced proliferation of high-proliferative potential precursors during embryonic hematopoiesis. Blood 101, 124-133, doi:10.1182/blood-2002-02-0398 (2003).
    151 Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome research 22, 939-946, doi:10.1101/gr.128124.111 (2012).
    152 Benbouza, H., Jacquemin, J.-M., Baudoin, J.-P. & Mergeai, G. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnologie, agronomie, société et environnement 10, 77-81 (2006).
    153 Blankenberg, D. et al. Manipulation of FASTQ data with Galaxy. Bioinformatics (Oxford, England) 26, 1783-1785, doi:10.1093/bioinformatics/btq281 (2010).
    154 Patel, R. K. & Jain, M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PloS one 7, e30619, doi:10.1371/journal.pone.0030619 (2012).
    155 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England) 29, 15-21, doi:10.1093/bioinformatics/bts635 (2013).
    156 Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments. Bioinformatics (Oxford, England) 28, 2184-2185, doi:10.1093/bioinformatics/bts356 (2012).
    157 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics (Oxford, England) 26, 841-842, doi:10.1093/bioinformatics/btq033 (2010).
    158 Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC genomics 9, 488, doi:10.1186/1471-2164-9-488 (2008).
    159 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 15, 550, doi:10.1186/s13059-014-0550-8 (2014).
    160 Raney, B. J. et al. Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics (Oxford, England) 30, 1003-1005, doi:10.1093/bioinformatics/btt637 (2014).
    161 Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria (2017).
    162 Ritz, C. & Spiess, A. N. qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis. Bioinformatics (Oxford, England) 24, 1549-1551, doi:10.1093/bioinformatics/btn227 (2008).
    163 Vamvakopoulos, N. C., Vournakis, J. N. & Marcus, S. L. The effect of magnesium and manganese ions on the structure and template activity for reverse transcriptase of polyribocytidylate and its 2'-0-methyl derivative. Nucleic acids research 4, 3589-3597 (1977).
    164 DeAngelis, M. M., Wang, D. G. & Hawkins, T. L. Solid-phase reversible immobilization for the isolation of PCR products. Nucleic acids research 23, 4742-4743 (1995).
    165 Hafner, M. et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods (San Diego, Calif.) 44, 3-12, doi:10.1016/j.ymeth.2007.09.009 (2008).
    166 Sultan, M. et al. Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC Genomics 15, 675, doi:10.1186/1471-2164-15-675 (2014).
    167 Munafó, D. B. & Robb, G. B. Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA 16, 2537-2552, doi:10.1261/rna.2242610 (2010).
    168 Zhuang, F., Fuchs, R. T. & Robb, G. B. Small RNA expression profiling by high-throughput sequencing: implications of enzymatic manipulation. Journal of nucleic acids 2012, 360358, doi:10.1155/2012/360358 (2012).
    169 Machida, R. J. & Lin, Y. Y. Four methods of preparing mRNA 5' end libraries using the Illumina sequencing platform. PloS one 9, e101812, doi:10.1371/journal.pone.0101812 (2014).
    170 Page, P., DeJong, J., Bandstra, A. & Boomsma, R. A. Effect of serum and oxygen concentration on gene expression and secretion of paracrine factors by mesenchymal stem cells. International journal of cell biology 2014, 601063, doi:10.1155/2014/601063 (2014).
    171 Suh, M. R. et al. Human embryonic stem cells express a unique set of microRNAs. Developmental biology 270, 488-498, doi:10.1016/j.ydbio.2004.02.019 (2004).
    172 Rosa, A. & Brivanlou, A. H. A regulatory circuitry comprised of miR‐302 and the transcription factors OCT4 and NR2F2 regulates human embryonic stem cell differentiation. The EMBO Journal 30, 237 (2010).
    173 Laurent, L. C. et al. Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence. Stem Cells 26, 1506-1516, doi:10.1634/stemcells.2007-1081 (2008).
    174 Fuziwara, C. S. & Kimura, E. T. Insights into Regulation of the miR-17-92 Cluster of miRNAs in Cancer. Frontiers in Medicine 2, 64, doi:10.3389/fmed.2015.00064 (2015).
    175 Tian, W. et al. High-throughput functional microRNAs profiling by recombinant AAV-based microRNA sensor arrays. PloS one 7, e29551, doi:10.1371/journal.pone.0029551 (2012).
    176 Flores, O., Kennedy, E. M., Skalsky, R. L. & Cullen, B. R. Differential RISC association of endogenous human microRNAs predicts their inhibitory potential. Nucleic Acids Research 42, 4629-4639, doi:10.1093/nar/gkt1393 (2014).
    177 Spurlock, C. F., 3rd, Crooke, P. S., 3rd & Aune, T. M. Biogenesis and Transcriptional Regulation of Long Noncoding RNAs in the Human Immune System. J Immunol 197, 4509-4517, doi:10.4049/jimmunol.1600970 (2016).
    178 Mele, M. et al. Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs. Genome research 27, 27-37, doi:10.1101/gr.214205.116 (2017).
    179 Yang, L., Duff, M. O., Graveley, B. R., Carmichael, G. G. & Chen, L. L. Genomewide characterization of non-polyadenylated RNAs. Genome biology 12, R16, doi:10.1186/gb-2011-12-2-r16 (2011).
    180 Wang, Z., Oron, E., Nelson, B., Razis, S. & Ivanova, N. Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell stem cell 10, 440-454, doi:10.1016/j.stem.2012.02.016 (2012).
    181 Tsialikas, J. & Romer-Seibert, J. LIN28: roles and regulation in development and beyond. Development (Cambridge, England) 142, 2397-2404, doi:10.1242/dev.117580 (2015).
    182 Popovic, R. et al. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 113, 3314-3322, doi:10.1182/blood-2008-04-154310 (2009).
    183 Faridani, O. R. et al. Single-cell sequencing of the small-RNA transcriptome. Nat Biotechnol 34, 1264-1266, doi:10.1038/nbt.3701 (2016).
    184 Fan, X. et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome biology 16, 148, doi:10.1186/s13059-015-0706-1 (2015).
    185 Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single cell in situ RNA profiling by sequential hybridization. Nature methods 11, 360-361, doi:10.1038/nmeth.2892 (2014).
    186 Yu, H., Ernst, L., Wagner, M. & Waggoner, A. Sensitive detection of RNAs in single cells by flow cytometry. Nucleic Acids Res 20, 83-88 (1992).
    187 Ståhlberg, A. & Kubista, M. The workflow of single-cell expression profiling using quantitative real-time PCR. Expert Review of Molecular Diagnostics 14, 323-331, doi:10.1586/14737159.2014.901154 (2014).
    188 Lee, J. W. RNA sequencing of the nephron transcriptome: a technical note. Kidney research and clinical practice 34, 219-227, doi:10.1016/j.krcp.2015.08.008 (2015).
    189 Sarkar, G., Kapelner, S. & Sommer, S. S. Formamide can dramatically improve the specificity of PCR. Nucleic Acids Res 18, 7465 (1990).
    190 Jensen, M. A., Fukushima, M. & Davis, R. W. DMSO and betaine greatly improve amplification of GC-rich constructs in de novo synthesis. PloS one 5, e11024, doi:10.1371/journal.pone.0011024 (2010).
    191 Card, D. A. et al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Molecular and cellular biology 28, 6426-6438, doi:10.1128/mcb.00359-08 (2008).
    192 Herrera-Merchan, A. et al. miR-33-mediated downregulation of p53 controls hematopoietic stem cell self-renewal. Cell cycle (Georgetown, Tex.) 9, 3277-3285, doi:10.4161/cc.9.16.12598 (2010).
    193 Droge, P. & Davey, C. A. Do cells let-7 determine stemness? Cell Stem Cell 2, 8-9, doi:10.1016/j.stem.2007.12.003 (2008).
    194 Li, J. et al. miR-10a restores human mesenchymal stem cell differentiation by repressing KLF4. Journal of cellular physiology 228, 2324-2336, doi:10.1002/jcp.24402 (2013).
    195 Jin, C., Zhang, Y. & Li, J. Upregulation of MiR-196a promotes cell proliferation by downregulating p27kip1 in laryngeal cancer. Biological research 49, 40, doi:10.1186/s40659-016-0100-9 (2016).
    196 Chen, J. A. & Wichterle, H. Apoptosis of limb innervating motor neurons and erosion of motor pool identity upon lineage specific dicer inactivation. Frontiers in neuroscience 6, 69, doi:10.3389/fnins.2012.00069 (2012).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE