簡易檢索 / 詳目顯示

研究生: 翁崇寧
Weng, Chung-Ning
論文名稱: Helmholtz運算子在正三角形區域的特徵架構
Eigenstructure of Helmholtz operator for equilateral triangle
指導教授: 陳東陽
Chen, Tung-yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 119
中文關鍵詞: 特徵值問題正三角形
外文關鍵詞: equilateral triangle, Helmholtz
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主要探討Helmholtz偏微分運算子在正三角形區域底下的特徵架構。由於正三角形幾何下Helmholtz方程之封閉形式精確解較少文獻記載,尤其推導的過程一直未能完整的呈現,本文回歸Lamé解析這個問題時的基本架構,藉由三角座標系統的輔助用直接的方式求解,最後得到在Dirichlet與Neumann兩種邊界下的解皆為一有限項之三角函數形式。再者介紹所得出之特徵函數的一些應用,包含格林函數(Green’s function)、模態疊加與幾何延伸。最後將二維問題的架構類比到三維,提出正四面體座標系統並配合求解三維Helmholtz方程式在此區域底下的特徵值與特徵函數的可能解析方式。

     The main content of this thesis is to explore the eigenstructure of Helmholtz operator for an equilateral triangle region. We first introduce a triangular coordinate intrduced first by Lamé. We show that by separation of variables closed form expressions for the eigenvalues and eigenfunctions for an equilateral triangle with Dirichlet and Neumann boundary condictions can be exactly found. Numerical solutions are plotted for a few elementary modes. Some potential applications of the eigenfunctions are also addressed, such as Green’s functions, method of the eigenfunction expansion and some geometric extensions by reflectional image.Lastly we discuss the possibility of generalizing the two-dimensional plan configuration to three-dimensional space.

    摘要……………………………………………………………………………I 誌謝…………………………………………………………………………II 目錄…………………………………………………………………………III 表目錄………………………………………………………………………VII 圖目錄………………………………………………………………………VIII 第一章 緒論…………………………………………………………………1 1.1 研究動機……………………………………………………………1 1.2 文獻回顧……………………………………………………………1 1.3 論文內容簡介………………………………………………………3 第二章 三角形特徵方程式與Dirichlet邊界值問題……………………4 2.1方程式源起…………………………………………………………4 2.2三角座標系統………………………………………………………6 2.2.1 三角座標系統幾何關係………………………………………6 2.2.2 三角座標表示方法……………………………………………6 2.2.3 三角座標系統特性……………………………………………7 2.3 Dirichlet邊界值問題……………………………………………10 2.3.1方程式與一般解………………………………………………10 2.3.2 對稱與反對稱………………………………………………11 2.3.3 求解對稱模式 ………………………………………………16 2.3.4 求解反對稱模式 ……………………………………………18 2.3.5 級數振幅探討………………………………………………19 2.4模態特性……………………………………………………………22 第三章 Neumann邊界值問題………………………………………………31 3.1 Neumann邊界值問題……………………………………………31 3.1.1 方程式與一般解……………………………………………31 3.1.2 對稱與反對稱………………………………………………33 3.1.3 求解對稱模式 ……………………………………………37 3.1.4 求解反對稱模式 …………………………………………39 3.1.5 級數振幅探討………………………………………………40 3.2 Dirichlet 與Neumann邊界值問題答案比較……………………44 3.3 模態特性…………………………………………………………45 第四章 正三角形特徵函數與應用………………………………………54 4.1格林函數-特徵函數展開法………………………………………54 4.1.1 格林函數-非齊性邊界値問題………………………………55 4.1.2 正三角形區域內格林函數…………………………………57 4.2 複合邊界條件(Robin B.C)-特徵函數疊加法…………………59 4.3 幾何形狀延伸……………………………………………………61 4.3.1 三角形特徵函數摺疊(fold)與鏡射(reflection) ………61 4.3.2 幾何延伸探討-菱形…………………………………………63 4.3.3 幾何延伸探討-正六邊形……………………………………64 4.4 幾何延伸實例應用………………………………………………65 第五章 四面體座標系統與特徵方程式…………………………………77 5.1 正四面體座標系統………………………………………………77 5.1.1 四面體座標系統基本幾何…………………………………77 5.1.2 四面體座標標示方法………………………………………79 5.1.3 四面體座標系統特性………………………………………80 5.2 四面體區域內三維特徵方程式與Dirichlet邊界值問題………82 5.2.1 四面體Helmhlotz方程式邊界條件…………………………83 5.2.2 四面體對稱與反對稱………………………………………89 5.3 未能求解因素探討………………………………………………92 第六章 結論與展望………………………………………………………94 參考文獻……………………………………………………………………95 附錄A………………………………………………………………………98 附錄B……………………………………………………………………102 附錄C……………………………………………………………………105 附錄D……………………………………………………………………109 附錄E……………………………………………………………………115 自述………………………………………………………………………119

    David, H. S., Electromagnetic Waves, Prentice-Hall, Inc., 1994.

    David, T. B., Fundamentals of Physical Acoustics, John Wiley & Sons, Inc., 2000.

    Doncheski, M. A. and Robinett, R. W., Quantum Mechanical Analysis of the Equilateral Triangle Billiard:Periodic Orbit Theory and Wave Packet Revivals, Annals of Physics 299, pp. 208–227, 2002.

    Faires, J. D. and Burden, R., Numerical Methods, 3rd ed., Thomson Learning, Inc., 2003.

    Fan, P., Chu, J. G. and Shao, J. D., Conductance calculation of a long tube with equilateral triangle cross section, J. Vac. Sci. Technol. A, 20, pp. 2119-2122, 2002.

    Jones, D. S., Acoustic and Electromagnetic Waves, Oxford, 1986.

    Lamé, G., Mémoire sur la propagation de la chaleur dans les polyèdres, J. de l’École Polytechnique, 22, pp. 194–251, 1833.

    McCartin, B. J., Eigenstructure of the equilateral triangle, Part I: The Dirichlet problem, SIAM Review, 45, pp. 267-287, 2003.

    McCartin, B. J., Eigenstructure of the equilateral triangle, Part II: The Neumann problem, Math. Probl. Eng., pp. 517-539, 2002.

    McCartin, B. J., Eigenstructure of the equilateral triangle, Part III: The Robin problem, Int. J. Math.s and Math.l Sci., 16, pp. 807-825, 2004.

    Michelle, E. J., Jan, C. M. and Keith, B. O., A Green function for the equilateral triangle, Zeitschrift für angewandte Mathematik und Physik ZAMP, 56, pp. 31-34, 2005.

    Pinsky, M. A., The eigenvalues of an equilateral triangle, SIAM J. Math. Anal., 11, pp. 819–827, 1980.

    Pinsky, M. A., Completeness of the eigenfunctions of the equilateral triangle, SIAM J. Math. Anal., 16, pp. 848–851, 1985.

    Práger, M., Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle, Appl. Math., 43, pp. 311–320, 1998.

    Rassias, J. M.(Editor), Geometry, Analysis and Mechanics, World Scientific, 1994.

    Riley, K. F., Mathematical Methods for Physics and Engineering, 2nd ed., Cambridge University Press, 2002.

    Roach, G. F., Green’s Functions, 2nd ed., Cambridge University Press, 1982.

    Timothy, J. H., Free nonlinear vibrations for plate equations on the equilateral triangle, Nonlinear Analysis, 44, pp. 575-599, 2001.

    Titchmarsh, E. C., Eigenfunction Expansions Associated with Second-Order Differential Equations, 2nd ed., Oxford:Clarendon Press, 1962.

    Vvedensky, D. D., Partial Differential Equations with Mathematica, Addison Wesley Pub. Co., 1993.

    洪維恩, 數學運算大師Mathematica 4, 碁峯資訊, 2001.

    張智星, Matlab程式設計與應用, 清蔚科技, 2000.

    下載圖示 校內:立即公開
    校外:2005-06-22公開
    QR CODE