簡易檢索 / 詳目顯示

研究生: 呂東龍
Lu, Don-Ron
論文名稱: 選擇權在非對數常態下訂價-以台指選擇權為例
Option Pricing under Non-Lognormal Distribution-With Empirical Study on Taiwan Index Options
指導教授: 黃銘欽
Huang, Min-Ching
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 42
中文關鍵詞: Monte Carlo模擬道瓊股價指數幾何布朗運動台指選擇權
外文關鍵詞: TAIEX Option, Monte Carlo simulation, GBM, Dow-Jones stock index
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   著名的Black-Scholes 訂價公式是根據幾何布朗運動而來,用來計算歐式選擇權價格。幾何布朗運動要能正確,關鍵在於未來價格的變動與之前的價格是獨立的。我們以1997年7月2日到2004年12月31日的台灣股價加權指數,來檢查是否符合幾何布朗運動。另外,我們提出一個符合資料又合適的新模式,並採取Monte Carlo模擬法在(a)未來的價格變動與過去相似。(b)假設風險中立評價原則,計算台灣股票加權指數選擇權的價格。

     The celebrated Black-Scholes formula for European option pricing is based on geometric Brownian motion for the asset price movements. For a geometric Brownian motion to be accurate, a key premise is that future price changes are independent of past price movements. We examine real data to see if they are consistent with the geometric Brownian motion model and analyze the sequence of daily closing values of Taiwan Weight Stock Index from July 2, 1997 to December 31, 2004. Besides, we propose a new model that is consistent with the data as well as plausible and we use the technique of Monte Carlo simulation to obtain TAIEX option price under (a) the assumption that the future resembles the past and (b) a risk-neutral valuation based on the proposed model.

    Contents Chapter 1 Introduction................................1 Chapter 2 Dynamic Asset Price Model and Option Pricing theory...3 2-1 Brownian Motion.................3 2-2 Ito’s Lemma ...................4 2-3 Geometric Brownion Motion (GBM).5 2-4 What is option? ................6 2-5 The payoff of option ...........6 2-6 Black-Scholes model and its Derivation .................................8 Chapter 3 Beyond Black Scholes formula and Monte Carlo Simulation for TAIEX Option Pricing .13 3-1 Basic assumptions behind the Black-Scholes formula............................13 3-2 Data Description and Analysis .16 3-2-1 The Taiwan Weight Stock Index ...........................................16 3-2-2 The Dow-Jones Stock Index .22 3-2-3 The Simulated Stock Data ..23 3-3 Alternative models for asset price dynamics...................................24 3-3-1 Model one..................25 3-3-2 Model two .................25 3-4 Monte Carlo Simulations with TAIEX Option Pricing.............................25 Chapter 4 Conclusion ..................... 30 References ................................32 Appendix A ................................34 Appendix B ................................37

    References
    1. Bachelier, L. 1900,‘Théorie de la Spéculation.’Annales de l'Ecole Normale Supérieure, 17 :21-86.
    2. Bollerslev, T. 1987, ‘A conditional heterkedastic time series model for speculative prices and rates of return.’ Review of Economics and Statistics 69, 542-547.
    3. Borland, L. 2002, ‘Option Pricing Formulas Based on a Non-Gaussian Stock Price Model.’ Iris Financial Engineering and Systems, California 94104, Received 28 February 2002; published 7 August 2002.
    4. Cox, J. C., and Ross, S. A. 1976, ‘The valuation of options for alternative stochastic processes.’ Journal of Financial Economics 3, 145-166.
    5. Cox, J. C., Ross, S. A., and Rubinstein, M. 1979,Option pricing: A simplified approach. J. Finan. Econ., 7:229-263.
    6. Cox, J. C., and Rubinstein, M. 1985, Options markets. Prentice-Hall; Englewood Cliffs, New Jersey.
    7. Derman, E., and Kani, I. 1994, Riding on a smile. Risk 7, 32-39.
    8. Dupire, B. 1994, Pricing with a smile. Risk 7, 18-20.
    9. Einstein, A. 1905, ‘On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat.’ Physik Annalen der 17, 549-560.
    10. Geske, R. 1979, ‘The valuation of compound options.’ Journal of Financial Economics 7, 63-81.
    11. Heston, S. L., 1993, ‘A closed-form solution for options with stochastic volatility with applications to bond and currency options.’ Review of Financial Studies 6, 327-344.
    12. Hull, J. and White, A. 1987, ‘The pricing of options on assets with stochastic volatility.’ Journal of Finance 42, 281-300.
    13. Hull, J. 2003, ‘Options, Futures, and Other Derivatives.’5th ed. Upper-Saddle River, New-Jersey, Prentice-Hall.
    14. Johnson, H., and Shanno, D. 1987, ‘Option pricing when the variance Is changing.’ Journal of Financial and Quantitative Analysis 22, 143-151.
    15. Kazuhiro, I. 2001, ‘Analytic Formula for the European Normal Black Scholes Formula.’
    16. Kenneth, S. A. and Paul, G., J. 1997, ‘On The Pricing of Intermediated Risks: Theory and Application to Catastrophe Reinsurance.’ NBER Working Papers 6011, National Bureau of Economic Research.
    17. Merton, R. C. 1973, ‘Theory of rational option pricing.’ Bell Journal of Economics and Management Science 4, 141-183.
    18. Merton, R. C. 1976, ‘Option pricing when underlying stock returns are discontinuous.’ Journal of Financial Economics 3, 125-144.
    19. Mikosch, T. 1998, Elementary, Stochastic Calculus with Finance View. Vol.6 Singapore; World Scientific Publ, River Edge, N.J.
    20. Naik, V. 1993, ‘Option valuation and hedging strategies with jumps in the volatility of asset returns.’ Journal of Finance 48, 1969-1984.
    21. Perold, A. F. 1995, ‘The Payment System and Derivative Instruments.’ The global financial system: A financial perspective. Boston, MA: Harvard Business School press.
    22. Ross, S. M. 1999, An Introduction to Mathematical Finance:Options and Other Topics. 2nd ed. Cambridge University Press, New York.
    23. Ross, S. M. 1999 Stochastic Process 4nd ed. Cambridge University Press, New York .
    24. Rubinstein, M. 1983, ‘Displaced diffusion option pricing.’ Journal of Finance 38, 213-217
    25. Scott, L.O. 1987, ‘Option pricing when the variance changes randomly: theory, estimation, and an application.’ Journal of Financial and Quantitative Analysis 22, 419-438.
    26. Skiadopoulos, G. 2000, ‘Volatility smile consistent option models: a survey.’ International Journal of Theoretical and Applied Finance 4, 403-437.
    27. Snedecor, G.. W. and Cochran, W. G.. 1989, Statistical Methods, Eighth Edition, Iowa State University Press.
    28. Stein, E. M. and Stein, J.C. 1991, ‘Stock price distributions with stochastic volatility: an analytic approach.’ Review of Financial Studies 4: 727-752.
    29. Stephens, M. A. 1974, ‘EDF Statistics for Goodness of Fit and Some Comparisons.’ Journal of the American Statistical Association, Vol. 69, pp. 730-737.
    30. Tavella, D. A. 2002, Quantitative methods in derivatives Pricing : /an introduction to Computational finance New York :/ Wiley ,/c.
    31. Wiener, N. 1923,‘Differential space.’ Journal of Mathematical Physics. Math. Inst.Tech.2, 131-174.
    32. Wiggins, J. B. 1987, ‘Option values under stochastic volatility: theory and empirical estimates.’ Journal of Financial Economics 19, 351-377.

    無法下載圖示 校內:2105-06-29公開
    校外:2105-06-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE