| 研究生: |
莊敬偉 Chuang, Ching-wei |
|---|---|
| 論文名稱: |
以流函數法推導高階緩坡方程式 Derivation of Higher-Order Mild-Slope Equation Using Stream Function Method |
| 指導教授: |
許泰文
HSU, TAI-WEN |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 流函數法 、緩坡方程式 |
| 外文關鍵詞: | Lagrangian, mild-slope equation |
| 相關次數: | 點閱:82 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用流函數法推導緩坡方程式,發展高階流函數緩坡方程式,用以改善傳統勢能理論 (potential theory) 在底床邊界微分發生奇異點之限制問題。本文以連續方程式及能量守恆原理,利用變分法推導流函數之高階緩坡方程式,將水深積分從底部積分至自由液面,得到含有水位和流函數之高階緩坡方程式。當水位為零時,本文之方程式與前人所推導之流函數緩坡方程式一致。文中並以有限元素法建立二維數值模式,其中形狀函數使用二次方程式,以避免邊界條件二次微分為零之不合理現象。所發展之數值模式用來模擬波浪通過各種地形底床之變形。模式計算結果與前人勢能理論解析之緩坡方程式進行比較及驗證,得到合理的結果。本文分別針對波浪通過斜坡底床、單一潛堤及沙漣底床之計算條件,探討其適用範圍。本文之流函數緩坡方程式同時應用於波浪通過系列潛堤之地形底床,模擬波浪之布拉格共振 (Bragg resonance),反射率和結果顯示的預測值與實驗數據,表現良好的一致性。
The mild-slope equation was derived using stream function method. A numerical model was developed by means of finite element method to simulate wave deformation over different types of sea bottom. Computational cases including Booij’s ramp, parabolic mound and sinusoidal bed were used to test the accuracy and valid range of the present model. The model is also applied to a series of submerged breakwaters for describing Bragg resonance of water waves. Comparison of the numerical results with experiments shows that the present model is in a good agreement with experimental data.
1. Athanassoulis, G. A. and Belibassakis, K. A., “A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions,” Journal of Fluid Mechanics, Vol. 389, 275–301 (1999).
2. Berkhoff, J.C.W., “Computation of Combined Refraction-Diffraction,” Proceedings of 13th International Coastal Engineering Conference, Canada, ASCE, pp. 471-490 (1972).
3. Booij, N., “A Note on the Accuracy of Mild-Slope Equation,” Coastal Engineering, Vol. 7, pp. 191-203 (1983).
4. Chamberlain, P. G. and Porter, D., “The modified mild-slope equation,” Journal of Fluid Mechanics, Vol. 291, 393–407 (1995).
5. Chandrasekera, C. N. and Cheung, K. F., “Linear refraction–diffraction model for steep bathymetry,” Journal of Waterway Port Coastal and Ocean Engineering, ASCE, 127, 161–171 (2001).
6. Davies, A. G. and Heathershaw, A. D., “Surface Propagation over Sinusoidally Varying Topography,” Journal of Fluid Mechanics, Vol. 144, pp. 419-446 (1984).
7. Goda, Y. and Suzuki, Y., “Estimation of Incident and Reflected Waves in Random Wave Experiments,” Proceedings of 15th International Coastal Engineering Conference, Hawaii, ASCE, pp. 628-650 (1976).
8. Hsu, T.W. and Wen, C.C., “A Parabolic Equation Extended to Account for Rapidly Varying Topography,” Ocean Engineering, Vol. 28, pp. 1479-1498 (2001).
9. Ito, Y. and Tanimoto, K., “A Method of Numerical Analysis of Wave Propagation-Application to Wave Diffraction and Refraction,” Proceedings of 13th International Coastal Engineering Conference, ASCE, pp. 503-522 (1972).
10. Kirby, J. T., “A general wave equation for waves over tippled beds,” Journal of Fluid Mechanics, Vol. 162, 171–186 (1986).
11. Kirby, J. T. and Anton J. P., “Bragg Reflection of Waves by Artificial Bars,” Proceedings of 22nd International Coastal Engineering Conference, New York, ASCE, pp. 757-768 (1990).
12. Kim, J. W. and Bai, K. J., “A new complementary mild-slope equation,” Journal of Fluid Mechanics, vol. 511, pp. 25–40 (2004).
13. Li, B., “An Evolution Equation for Water Waves,” Coastal Engineering, Vol. 23, pp. 227-242 (1994a).
14. Madsen, P.A. and Larsen, J., “An Efficient Finite-Difference Approach to the Mild-Slope Equation,” Coastal Engineering, Vol. 11, pp. 329-351 (1987).
15. Massel, S. R., “Extended reflection-diffraction equation for surface waves,” Coastal Engineering, Vol. 19, pp. 97–126 (1993).
16. Porter, D. and Staziker, D. J., “Extensions of the mild-slope equation,” Journal of Fluid Mechanics, Vol. 300, 367–382 (1995).
17. Radder, A.C., “On the Parabolic Equation Method for Water Wave Propagation,” Journal of Fluid Mechanics, Vol. 95, No. 1, pp. 159-176 (1979).
18. Webster, W. C. and Wehausen, J. V., “Bragg Scattering of Water Waves by Green-Naghdi Theory,” Z angew Math Phys 46 Special Issue, pp. S566-S583 (1995).
19. 林貴斌,「以有限元素法模擬大角度入射之波場」,國立成功大學水利及海洋工程研究所碩士論文 (2000)。
20. 林達遠,「非線性緩坡方程式之初步研究」,國立成功大學水利及海洋工程研究所碩士論文 (2003)。
21. 林建鋒,「以PIV量測波浪通過系列潛堤之布拉格效應」,國立成功大學水利及海洋工程研究所碩士論文 (2006)。
22. 張憲國,「斜坡上入反射波的推估方法」,2000兩岸港口及海岸開發研討會論文集,台灣新竹,第39-44頁 (2000)。
23. 溫志中,「修正緩坡方程式之研發與應用」,國立成功大學水利及海洋工程研究所博士論文 (2001)。
24. 蔡立宏,「波浪通過系列潛堤之布拉格共振研究」,國立成功大學水利及海洋工程研究所博士論文 (2003)。
25. 蔡金晏,「有限元素法波場模式之研究」,國立成功大學水利及海洋工程研究所碩士論文 (2003)。