| 研究生: |
高育淳 Kao, Yu-Chun |
|---|---|
| 論文名稱: |
最小化織布製程存貨之最佳化製程參數之研究 A Study on Optimizing Process Parameters to Minimize Weaving Process Inventory |
| 指導教授: |
楊大和
Yang, Ta-Ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 反應與曲面法 、田口方法 、批量生產 、中央合成設計 、參數設計 |
| 外文關鍵詞: | Response Surface, Taguchi Method, Batch Production, Central Composite Design, Parameter Design |
| 相關次數: | 點閱:104 下載:27 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣紡織屬於以出口為導向的產業,在台灣發展已有七十餘年,主要生產順序為纖維(Fiber Production)、紡紗(Yarn Spinning)、織布(Weaving)、染整(Dyeing)及成衣(Clothing)等階段。而該產業須因應顧客需求進行設計及製造,屬於接單式生產(Make-to-Order, MTO),因此有材質、經緯紗條數、纖維長度、顏色等條件要求。在各個生產流程也有不同的計量單位、不同的生產規劃。近年來,在環境競爭與國際壓力下,接單式生產的模式已逐漸轉變為樣多量少、小批量、交期短、產品規格多變的生產環境,業者要在競爭的市場環境中脫穎而出,須在縮短生產週期時間、降低在製品庫存水準與提高達交率的策略下並行,而小批量的生產方式在規模較大的產業對於庫存的控制和生產計畫的制訂上,為一重要的管理挑戰。
本研究藉由田口實驗設計法之穩健設計概念,針對紡織廠織布製程的高存貨問題進行改善,以L_9直交表配置,並藉由田口方法中的望小特性進行分析,找出最小化平均存貨量的最佳組合因子,再與反應曲面法(Response Surface Methodology, RSM)中,常用來配適二階模式的中央合成設計(Central Composite Design, CCD)所求得的最佳化結果相比,並將最終結果分別代入用紗試算表系統以確認實驗。
最後透過實驗結果顯示,在需求碼數為5千至1萬碼的情況下,田口方法與RSM設計所預估的最佳組合因子皆相同,皆為紗粒重量1.1 Kg、單軸條數857、丹尼數90,其存貨量平均為4486碼,相較於現況,減少29%;需求量為1萬至2萬碼的最佳參數則是由RSM求得最佳,為紗重量1.1Kg、單軸條數857、丹尼數90組成,存貨為1040碼,改善46%的效益;最後則是碼數為2萬至3萬碼的需求量,最佳因子組合同樣由RSM求得最佳為紗重量1.2 Kg、單軸條數863、丹尼數75,其存貨改善效益為71%。
Textile industry is an export-oriented industry that has been developed in Taiwan for over 70 years. The main production sequence is fiber, spinning, weaving, dyeing and finishing, and garment production. The industry has to design and manufacture according to the customer's demand, and it is an order-based production, so there are requirements for material, warp and weft yarn, fiber length, color, and other conditions. There are also different measurement units and different production plans for each production process. In recent years, under the competitive environment and international pressure, the production mode of order production has gradually changed to a production environment with high sample size, low batch, short delivery time, and changing product specifications. The small batch production method is an important management challenge for larger industries in terms of inventory control and production planning.
In this study, an experimental design approach is used to analyze different demand scenarios and propose an appropriate decision model as a benchmark for capacity planning to assist production management to properly control inventory and keep it at a reasonable economic level to achieve the goal of minimizing inventory, further reducing the operating time of personnel and machines, minimizing unnecessary actions and production waste, and thus avoiding overproduction. After analyzing and comparing the results of different demand situations, the best combination of factors using the Response Surface Methodology (RSM) design method for scenario two can minimize the inventory volume and achieve good performance in terms of performance indicators. Therefore, if the process parameters can be adjusted appropriately to meet the demand, and if the process can be improved by multiple rounds, it will improve the high inventory problem in the textile industry under the low volume and diversified production mode, and further improve the production efficiency and reduce the production cost.
Finally, continuous improvement is the only way to maximize the effectiveness of the whole enterprise and maintain a higher competitiveness.
2021年台灣紡織工業概況,台灣紡拓會官網,Available: https://www.textiles.org.tw/TTF/main/home/Home.aspx (取得日期: 2022年11月10日)
李慧瑜(2000),「台灣與全球紡織產業互動趨勢探討」–華銀月刊,華南商業銀行,台北市。
林則孟(2005),「紡織業織物協同設計–宏遠興業公司」–製商整合e化個案集,教育部,新竹市。
范錚強(2005),「成衣業全球運籌管理系統個案–南緯紡織公司」–製商整合e化個案集,教育部,新竹市。
楊大和、李兆華,2021,精實管理4.0之自働生產管理環,工業工程雜誌,2021年5月,https://sites.google.com/ciie.org.tw/column501/精實管理4-0之自働生產管理環?authuser=2 (取得日期:2022年11月10日)
李輝煌 (2004),《田口方法–品質設計的原理與實務》,高立圖書,台北。
蘇朝墩 (2002),《品質工程》,中華民國品質學會,台北。
丁志華、戴寶通 (2001),《田口實驗計畫法簡介(Ⅰ) 》,毫微米通訊第八卷第三期,pp7-11,國家毫微米元件實驗室。
陳順宇、鄭碧娥(2002),《實驗設計》,華泰書局,台北。
陳羿彣(2016),「紡織染整廠染色工作站經時管理少人化之研究」,國立成功大學製造資訊與系統研究所,台南。
曾珞萍(1996),「以反應曲面法尋找多目標模擬模式之最佳解-以半導體封裝廠印字區為例」,國立成功大學製造資訊與系統研究所,台南。
邱敬琮(2006),「先進規劃與排程系統應用於紡織業之研究」,私立東海大學工業工程與經營資訊研究所,台中。
Amiri, N., Moradi, A., Tabasi, S. A. S., & Movaffagh, J. (2018). Modeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodology. Materials Research Express, 5(4), 045404.
Azzawi, I. D., & Al-damook, A. (2022). Multi-objective optimum design of porous triangular chamber using RSM. International Communications in Heat and Mass Transfer, 130.
Bayuo, J., Abukari, M. A., & Pelig-Ba, K. B. (2020). Optimization using central composite design (CCD) of response surface methodology (RSM) for biosorption of hexavalent chromium from aqueous media. Applied Water Science, 10(6), 1-12.
Bhattacharya, S. (2021). Central composite design for response surface methodology and its application in pharmacy. In Response Surface Methodology in Engineering Science.
Box, G. E., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2(4), 455-475.
Corbett, C., & Yücesan, E. (1993). Modeling just-in-time production systems: a critical review. Proceedings of the 25th conference on Winter simulation, December. 819-828, France.
Dhavlikar, M. N., Kulkarni, M. S., & Mariappan, V. (2003). Combined Taguchi and dual response method for optimization of a centerless grinding operation. Journal of Materials Processing Technology, 132(1-3), 90-94.
Dubey, A. K., & Yadava, V. (2008). Multi-objective optimisation of laser beam cutting process. Optics & Laser Technology, 40(3), 562-570.
Ferreira, S. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., ... & Dos Santos, W. N. L. (2007). Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179-186.
Gomes, T., Barradas, C., Dias, T., Verdial, J., Morais, J. S., Ramalhosa, E., & Estevinho, L. M. (2013). Optimization of mead production using response surface methodology. Food and Chemical Toxicology, 59, 680-686.
Hasani, H., Tabatabaei, S. A., & Amiri, G. (2012). Grey relational analysis to determine the optimum process parameters for open-end spinning. Journal of Engineered Fibers and Fabrics, 7(2), 81-86.
Hasanuzzaman, Dan, P. K., & Basu, S. (2015). Optimization of ring-spinning process parameters using response surface methodology. The Journal of The Textile Institute, 106(5), 510-522.
Liker, J. K. (2021). The Toyota Way: 14 Management Principles from the World's Greatest Manufacturer, McGraw-Hill Education, New York, USA.
Mehmood, T., Ahmed, A., Ahmad, A., Ahmad, M. S., & Sandhu, M. A. (2018). Optimization of mixed surfactants-based β-carotene nanoemulsions using response surface methodology: an ultrasonic homogenization approach. Food Chemistry, 253, 179-184.
Meiabadi, M. S., Vafaei, A., & Sharifi, F. (2013). Optimization of plastic injection molding process by combination of artificial neural network and genetic algorithm. Journal of Optimization in Industrial Engineering, 6(13), 49-54.
Monteiro, R. R., de Oliveira, A. L. B., de Menezes, F. L., de Souza, M. C. M., Fechine, P. B., & dos Santos, J. C. (2022). Improvement of enzymatic activity and stability of lipase A from Candida antartica onto halloysite nanotubes with Taguchi method for optimized immobilization. Applied Clay Science, 228.
Montgomery Douglas C.(1976). Design and Analysis of Experiments. 8th ed. John Wiley.
Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons, New York, USA.
Nye, T. J., Jewkes, E. M., & Dilts, D. M. (2001). Optimal investment in setup reduction in manufacturing systems with WIP inventories. European Journal of Operational Research, 135(1), 128-141.
Optimization of mixed surfactants-based β-carotene nanoemulsions using response surface methodology: an ultrasonic homogenization approach. Food Chemistry, 253,179-184.
Palanikumar, K., & Karthikeyan, R. (2006). Optimal machining conditions for turning of particulate metal matrix composites using Taguchi and response surface methodologies. Machining Science and Technology, 10(4), 417-433.
Salam, K. K., Arinkoola, A. O., & Aminu, M. D. (2018). Application of response surface methodology (RSM) For the modelling and optimization of sand minimum transport condition (MTC) in pipeline multiphase flow. Petroleum and Coal. 60(2).
Salehi, R., Dadashian, F., Abedi, M., & Hasani, B. (2018). Optimization of chemical activation of cotton fabrics for activated carbon fabrics production using response surface methodology. The Journal of the Textile Institute, 109(12), 1586-1594.
Sette, S., Boullart, L., Van Langenhove, L., & Kiekens, P. (1997). Optimizing the fiber-to-yarn production process with a combined neural network/genetic algorithm approach. Textile Research Journal, 67(2), 84-92.
Su, C. T., & Chiang, T. L. (2002). Optimal design for a ball grid array wire bonding process using a neuro-genetic approach. IEEE Transactions on Electronics Packaging Manufacturing, 25(1), 13-18.
Saydam, C., & Cooper, W. D. (2002). A decision support system for scheduling jobs on multi‐port dyeing machines. International Journal of Operations & Production Management, 22(9), 1054-1065.
Tamang, M., & Paul, K. K. (2022). Adsorptive treatment of phenol from aqueous solution using chitosan/calcined eggshell adsorbent: optimization of preparation process using Taguchi statistical analysis. Journal of the Indian Chemical Society, 99(1).
Thomassey, S. (2010). Sales forecasts in clothing industry: The key success factor of the supply chain management. International Journal of Production Economics, 128(2), 470-483.
Womack, J. P., & Jones, D. T. (1997). Lean thinking—banish waste and create wealth in your corporation. Journal of the Operational Research Society, 48(11).
Zolgharnein, J., Shahmoradi, A., & Ghasemi, J. B. (2013). Comparative study of Box–Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb (II) adsorption onto Robinia tree leaves. Journal of Chemometrics, 27(1-2), 12-20.