簡易檢索 / 詳目顯示

研究生: 劉冠亨
Liu, Guan-Heng
論文名稱: 海堤附近波浪引致黏性流場之數值模擬
Numerical Simulation of Wave Induced Viscous Flow Field Near Seawalls
指導教授: 黃清哲
Huang, Ching-Jer
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 110
中文關鍵詞: 雷諾平均方程式質點等位函數法修正型沉浸邊界法週期波駐波週期平均流場
外文關鍵詞: RANS, particle level set method, improved immersed boundary method, standing wave, recirculating cell
相關次數: 點閱:81下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以二維波浪數值模式,模擬週期波入射至不同堤面坡度的海堤,探討海堤附近黏性流體的波流場特性。為模擬固體邊界附近的黏性流體運動行為,模式求解二維時變的雷諾平均方程式 (Reynolds Averaged Navier-Stokes eqautions,RANS) 與紊流模式 ( model)。並應用質點等位函數法 (Particle Level Set Method) 捕捉波浪溯升及碎波過程中,複雜的波形演變。此外,本文利用陳 (2011) 及 Huang et al. (2013) 所提出之修正型沉浸邊界法 (Improved Immersed Boundary Method,IIBM),處理波浪與結構物固體邊界互制之流場演變。此法可於卡氏座標下,模擬不規則固體邊界的流場,並滿足固液交界面中連續方程式與非穿透及無滑移的邊界條件。為了確保數值模式的準確性,本文利用多項前人實驗成果進行模式的驗證,包括波高分佈 (蔡等人,1997) 與水位變化 (Ting and Kirby,1994),以及堤面波壓分佈 (Sundar and Anand,2010) 等。本研究探討波浪入射不同堤面坡度時 (包括直立堤與 、 斜坡堤),波浪在溯升及溯降期間的波流場演變、堤面波壓、堤前底床剪應力分佈等特性。模擬結果除展示波浪碎波過程、堤前駐波現象、堤面波壓分佈、堤前底床剪應力外,更探討波浪溯升過程中的回流 (reverse flow) 現象、週期平均流場 (Time-averaged flow field) 中存在的穩環流胞 (steady recirculating cell) 以及水下逆流 (undertow) 現象。

    In this study, a two-dimensional Reynolds Averaged Navier-Stokes equations and the turbulence model are developed to simulate the viscous flow field near seawalls. The complex free surface configuration is captured using the Particle Level Set Method. The Improved Immersed Boundary Method (IIBM) is applied to represent the fluid-solid interaction in the vicinity of irregular solid boundary under the Cartesian grid system. To validate the accuracy of numerical model, the results were compared with the experimental data, including the deformation of wave on a steep sloping bed (Tsai et al., 1997), the water surface elevation on a mild sloping bed (Ting et al., 1994), and the wave pressure on the vertical seawall (Sundar et al., 2010). The numerical model is applied to investigate the viscous flow fields induced by periodic waves propagating on three different seawalls, involving vertical wall and steep seawalls with slope of 1:2 and 1:5. The free-surface evolutions, the wave pressure on the seawalls, the bottom shear stress prior to seawalls and the time-averaged flow field are discussed. The results reveal that the reverse flow within the boundary layer is related to the instantaneous wave elevations. An accompanying steady recirculating cells were observed in the time-averaged flow field of standing wave. However, breaking wave leads to an undertow on the seawall surface.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 符號表 XIII 第一章 緒論 1 1-1研究目的 1 1-2前人研究 3 1-2-1堤岸的分類 3 1-2-2週期波溯升 4 1-2-3週期波瞬時流場 6 1-2-4週期波平均流場 7 1-3本文組織架構 11 第二章 理論分析 12 2-1控制方程式 14 2-2無因次化處理 18 2-3等位函數法及質點等位函數法 20 2-4修正型沉浸邊界法(Improved Immersed Boundary Method) 23 2-4-1邊界速度(Boundary velocity)的計算 25 2-4-2守恆速度(Conservative velocity)的計算 25 2-5初始條件和邊界條件 28 2-5-1自由液面運動邊界條件 28 2-5-2自由液面動力邊界條件 29 2-5-3底床及結構物邊界條件 29 2-5-4上游邊界、水位、流場速度及壓力初始條件 29 第三章 數值方法 32 3-1數值網格配置 33 3-2控制方程式之離散化 34 3-3速度與壓力之耦合 38 3-3-1純流體區域中速度與壓力的耦合 38 3-3-2固體邊界附近速度與壓力的耦合 39 3-4自由液面邊界條件的處理 41 3-4-1等位函數的處理 41 3-4-2等位函數重佈過程 42 3-5計算流程 45 第四章 數值模式的驗證 46 4-1週期波在斜坡上溯升之模式驗證 46 4-2週期波作用於海堤波壓之驗證 50 第五章 結果與討論 52 5-1週期波與海堤交互作用之瞬時流場 52 5-1-1數值水槽設置及波浪條件 52 5-1-2數值網格配置 57 5-1-3流場之無因次化依據 59 5-1-4波浪與海堤坡度對溯升高度的影響 61 5-1-5各案例瞬時流場探討 64 5-2週期波與海堤交互作用之週期平均流場 81 5-3週期波與海堤交互作用之堤面波壓 90 5-4週期波與海堤交互作用之堤前底床剪應力 95 第六章 結論與建議 99 6-1結論 99 6-2建議 101 參考文獻 102

    1. Arneborg, L., Hansen , E. A., and Juhl, J. (1995). Numerical modeling of local scour at partially reflective structures. Final Proceedings of the Project Rubble-Mound Breakwater Failure Models, MAST Contract No. MAS2-CT92-0047, Vol. 2. Commission of the European Communities, Directorate General for Science, Research and Development.
    2. Bettjes, J. A. (1974). Surf similarily. Proc. 14th Int. Conf. Coastal Engineering, ASCE, pp. 466-480.
    3. Bing, C. (2007). The numerical simulation of local scour in front of a vertical-wall breakwater. Journal of Hydrodynamics, Ser. B., Vol. 18, Issue 3, pp. 134-138.
    4. Bradford, S. F. (2000). Numerical simulation of surf zone dynamics. J. Waterway. Port Coastal and Ocean Engineering, 126(1), pp. 1-13.
    5. Bradford, S. F. (2011). Nonhydrostatic model for surf zone simulation. J. Waterway. Port Coastal and Ocean Engineering, 137(1), pp. 163-174.
    6. Carrier, G., and Greenspan, H. (1958). Water waves of finite amplitude on a sloping beach. J. Fluid Mech, 4(1), pp. 97-109.
    7. Carter, T.G., Liu, L. F. P., and Mei, C. C., (1973). Mass transport by waves and offshore sand bed forms. Journal of Waterway Harbors and Coastal Engineering, ASCE, Vol.99. No. WW2, pp. 165-184.
    8. Chen, C. J., and Chen, H. C. (1984). Finite analytic numerical method for unsteady two-dimensional Navier-Stokes equations. Journal of computational physics, 53(2), pp. 209-226.
    9. Chu, M. (1953). Study on wave run-up. J. Civil Eng., March.
    10. Cowen, E. A., Sou, I. M., Liu, L. F. P., and Raubenheimer, B. (2003). Particle image velocimetry measurements within a laboratory-generated swash zone. J. Eng. Mech. 129(10), pp. 1119–1129
    11. Dean, R. G., and Dalrymple, R. A. (1984). Water waves mechanics for engineers and scientists. Prentice-Hall, Englewood Cliffs N.J.
    12. EA (UK), ENW (NL), KFKI (DE). (2007). EurOtop wave overtopping of sea defenses and related structures. Assessment Manual., pp. 181.
    13. Enright, D., and Fedkiw, R. et al. (2002). A hybrid particle level set method for improved interface capturing. Journal of computational physics, 183(1), pp. 83-116.
    14. Gislason, K., Fredsøe, J., Mayer, S., and Sumer, B. M., (2000). The mathematical modeling of the scour in front of the toe of a rubble-mound breakwater. In: Book of abstracts, 27th international coastal engineering conference. Vol. 1. Sydney (Australia): ASCE, pp. 130.
    15. Govender, K., Alport, M. J., Mocke, G., and Michallet, H. (2002). Video measurements of fluid velocities and water levels in breaking waves. Physica Scripta T97, pp. 152–159.
    16. Govender, K., Mocke, G. P., and Alport, M. J. (2004). Dissipation of isotropic turbulence and length-scale measurements through the wave roller in laboratory spilling waves. J Geophys Res 109(C8), pp. 8-18.
    17. Granthem, K. N. (1953). A model study of wave run-up on sloping structures. University of California, Department of Engineering.
    18. Hajivalie, F., and Yeganeh-Bakhtiary, A. (2009). Numerical Study of Breakwater Steepness Effect on the Hydrodynamics of Standing Waves and Steady Streaming. Journal of Coastal Research SI 51, pp. 514-518.
    19. Hajivalie, F., and Yeganeh-Bakhtiary, A., Houshanghi, H. and Gotoh, H. (2012). Euler-Lagrange model for scour in front of vertical breakwater. Applied Ocean Research;34, pp. 96–106.
    20. Hara, T., and Mei, C. C. (1990). Oscillating flows over periodic ripples. J. Fluid Mech, 211(1832), pp. 209.
    21. Huang C. J., Lin C. Y., and Chen, C. H. (2013). An improved immersed boundary method for simulating fluid-structure interaction. Int. J. Numer. Meth. Fluids, in revision.
    22. Huang, Z. C., Hsiao, S. C., Hwung, H. H., and Chang, K. A. (2009). Turbulence and energy dissipations of surf-zone spilling breakers. Coastal Eng56(7), pp. 733–746.
    23. Huang, Z. C., Hwung, H. H., Hsiao, S. C., and Chang, K. A. (2010). Laboratory observation of boundary layer flow under spilling breakers in surf zone using particle image velocimetry. Coastal Engineering 57(3), pp. 343–357.
    24. Hughes, S. A. (2004). Estimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter. Coastal Engineering, 51(11), pp. 1085-1104.
    25. Hughes, S. A., and Fowler, J. E. (1991). Wave-induced scour prediction at vertical walls. Proc., Coastal Sediments ’91, ASCE, New York, pp. 1886–1899.
    26. Hunt, I. A. (1959). Design of seawalls and breakwaters. Journal of Waterways and Harbours Division, 85, pp. 123-152.
    27. Irie, I., and Nadaoka, K. (1984). Laboratory reproduction of seabed scour in front of breakwaters. Proceedings of 19th International Conference on Coastal Engineering, ASCE, Vol. 2, pp. 1715-1731.
    28. Kennedy, A. B., and Chen, Q. et al. (2000). Boussinesq modeling of wave transformation, breaking, and runup. I: 1 D. Journal of Waterway, Port, Coastal and Ocean Engineering, 126(1), pp. 39-47.
    29. Lee, K., and Mizutani, N. (2008). Experimental study on scour occurring at a vertical impermeable submerged breakwater. Journal of Applied Ocean Research, 30(2), pp. 92-99.
    30. Lin, C. Y. (2007). Simulation of Breaking Waves Using Particle Level Set Method.,國立成功大學水利及海洋工程研究所博士論文。
    31. Madsen, P. A. and Sørensen, O. et al. (1997). Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves. Coastal Engineering, 32(4), pp. 255-287.
    32. Nadaoka, K., and Hino, M. et al. (1989). Structure of the turbulent flow field under breaking waves in the surf zone. Journal of Fluid Mechanics, 204(1), pp. 359-387.
    33. Noarayanan, L., and Murali, K. et al. (2012). Role of vegetation on beach run-up due to regular and cnoidal waves. Journal of Coastal Research, 28(1A), pp. 123-130.
    34. Osher, S., and Sethian. J. A. (1988). Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of computational physics, 79(1), pp. 12-49.
    35. Peng, D., and Merriman, B. et al. (1999). A PDE-based fast local level set method. Journal of computational physics, 155(2), pp. 410-438.
    36. Raichlen, F., and Hammack J. (1974). Run-up due to Breaking and Non-breaking Waves. Coastal Engineering, pp. 1937-1955.
    37. Ryu, Y., Chang, K. A., and Lim, H. J. (2005). Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater. Meas Sci Technol 16, pp. 1945–1953.
    38. Ryu, Y., Chang, K. A., and Mercier, R. (2007). Runup and green water velocities due to breaking wave impinging and overtopping. Exp. Fluids 43, pp. 555–567.
    39. Ryu, Y., and Chang K. A. (2008). Green water void fraction due to breaking wave impinging and overtopping. Exp Fluids 45, pp. 883–898.
    40. Sainflou. (1928). Essai sur les diques maritimes verticales. Annales des Ponts et Chaussees, 98(1), pp. 5-48.
    41. Sakakiyama, T., and Liu, L. F. P. (2001). Laboratory experiments for wave motions and turbulence flows in front of a breakwater. Coastal Engineering, 44(2), pp. 117-139.
    42. Sato, S., Tanaka, N., and Irie, I. (1969). Study on scouring at the foot of coastal structures. Coastal Engineering in Japan, Vol. 37, pp. 579-598.
    43. Saville. (1956). Wave run-up on shore structures. Journal of the Waterways and Harbors Division, ASCE 82(925).
    44. Sawaragi, T., Iwata, K., and Morino, A. (1977) Wave run-up height on gentle slopes. Coastal Eng. In Japan, Vol. 20, pp. 83-94.
    45. Shuto, N. (1967). Run-up of long waves on a sloping beach. Coastal Eng. In Japan, Vol. 10, pp. 23-38.
    46. Shuto, N. (1972). Standing waves in front of a sloping dike. Coastal Eng. In Japan, Vol. 17, pp. 1-12.
    47. Shuto, N. (1974). Nonlinear long waves in a channel of variable section. Coastal Eng. In Japan, Vol. 17, pp. 1-12.
    48. Sumer, B. M., and Fredsøe, J. (2000). Experimental study of 2D scour and its protection at a rubble-mound breakwater. Coastal Engineering, 40(1), pp. 59-87.
    49. Sundar, V., and Anand, K. V. (2010). Dynamic pressure and run-up on curved seawalls compared with vertical wall under cnoidal waves. Indian Journal of Marine Sciences, Vol. 39, pp. 579-588.
    50. Tahersima, M., Yeganeh-Bakhtiary, A., and Hajivalie, F. (2011). Scour pattern in front of vertical breakwater with wave overtopping. Journal of Coastal Research, SI 64.
    51. Ting, F. C. K., and Kirby, J. T. (1994). Observation of undertow and turbulence in a laboratory surf zone. Coastal Engineering, 24(1), pp. 51-80.
    52. Ting, F. C. K., and Kirby, J. T. (1995). Dynamics of Surf-Zone turbulence in a strong plunging breaker. Coastal Engineering, Vol. 24, pp. 177-204.
    53. Ting, F. C. K., and Kirby, J. T. (1996). Dynamics of surf-zone turbulence in a spilling breaker. Coastal Engineering, Vol. 27, pp. 131-160.
    54. Tsai, C. P., Wang, J. S., and Lin, C. (1998). Down-rush flow waves on sloping seawalls., Ocean Engineering, Vol. 25, No. 4-5, pp. 295-308.
    55. Tsuchiya, Y., and Yamaguchi, M. (1970). Horizontal and vertical water particle velocities induced by waves. Proc. 12th conf. on Coastal Eng. p.555-567.
    56. Wang, C. Y. (1968). On high-frequency oscillatory viscous flows. J. Fluid Mech, 32(Part 1).
    57. Wiegel, R. L. (1960). A presentation of cnoidal wave theory for practical application. Journal of Fluid Mechanics, Vol. 7(02), pp. 273-286.
    58. Wood, D. J., and Pedersen, G. K. et al. (2003). Modelling of run up of steep non-breaking waves. Ocean engineering, 30(5), pp. 625-644.
    59. Xie, S. L. (1981). Scouring pattern in front of vertical breakwaters and their influence on the stability of the foundation of the breakwaters. Report. Delft (Netherlands):Department of Civil Engineering, Delft University of Technology; September. pp. 61.
    60. Yeganeh-Bakhtiary, A., Hajivalie, F., and Hashemi-Javan, A. (2010). Steady streaming and flow turbulence in front of vertical breakwater with wave overtopping. Applied Ocean Research;32, pp. 91–102.
    61. Zhang, S., Cornett, A., and Li, Y. (2001). Experimental study of kinematic and dynamical characteristics of standing waves. In: Proceeding 29th IAHR conference.
    62. 片平和夫、世田彰、板村浩、森川高德 (1996),消波工使用於緩傾斜埋立護岸之越波特性相關實驗的研究,海洋開發論文集第12卷,第285-290 頁。
    63. 杉浦國男 (1994),緩傾斜護岸工法,海洋開發論文集第10卷,第343-347 頁。
    64. 涂盛文、吳昭融 (1996),海堤堤趾防止沖刷之試驗研究,第十八屆海洋工程研討會論文集,第729-735頁。
    65. 涂盛文、邱惠萍 (1994),海堤最佳面坡之二維試驗研究,第十六屆海洋工程研討會論文集,第C-17-C-30頁。
    66. 涂盛文、劉正琪、李宜靜 (1995),海堤最佳面坡之二維試驗研究-碎波試驗,第十七屆海洋工程研討會論文集,第1139-1153頁。
    67. 陳志欣 (2011),應用質量守恆邊界法模擬波浪於不規則近岸結構物上之溯升與越波,國立成功大學水利及海洋工程研究所博士論文。
    68. 曾子祥 (1999),親水性緩坡海堤最佳面坡及休憩功能之研究,國立交通大學土木工程學系碩士論文。
    69. 湯麟武、黃輝煌與李兆芳 (1979),堤腳沖刷理論與試驗之研究,第三屆海洋工程研討會論文集,第17-29頁。
    70. 黃煌煇、陳崑霖、林呈、黃國書 (1988),應用雷射測速儀測定斜坡上波浪之流場,第十屆海岸工程研討會論文集,第35-54頁。
    71. 蔡立宏、郭一羽、許泰文、張憲國、劉勁成、楊炳達 (2004),海岸保護及親水性結構物最適化配置研究2-1,交通部運輸研究所。
    72. 蔡清標、余建弘、陳鴻彬 (2003),碎波作用下堤趾沖刷特性之實驗研究,第二十五屆海洋工程研討會論文集,第475-482頁。
    73. 蔡清標、李宇曜、陳鴻彬 (1997),陡坡海床上波浪變形之實驗研究,第十九屆海洋工程研討會論文集,第137-144頁。

    下載圖示 校內:2015-08-02公開
    校外:2016-08-02公開
    QR CODE