簡易檢索 / 詳目顯示

研究生: 吳俐瑩
Wu, Li-Ying
論文名稱: Ha-RasV12 誘導MDCK細胞YAP入核的機制與功能
Ha-RasV12-overexpression induces YAP nuclear translocation in MDCK cells: mechanism and function
指導教授: 湯銘哲
Tang, Ming-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 60
中文關鍵詞: Ha-RasV12Caveolin-1YAP肌動凝蛋白張力Myosin IIB
外文關鍵詞: Ha-RasV12, Caveolin-1, YAP, actomyosin tension, Myosin IIB
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在我們先前的研究中發現過度表達Ha-RasV12會造成YAP即使在高密度的狗的腎臟上皮細胞還是維持YAP入核表達,並且是透過跟hippo pathway無關的機制。此外,過度表達Ha-RasV12也會降低Cav1的表達以及細胞連結的完整性。Cav1 曾經被報導可以透過招募E-cadherin 和β-catenin 複合體來穩定細胞連結。Furukawa 等人的研究當中,也發現了破壞細胞連結的肌動蛋白張力,會造成YAP在高密度的上皮細胞中入核表達。因此,我們認為過度表達Ha-RasV12所造成的Cav1下降,會去破壞細胞連結,進而促進YAP在高密度的細胞當中入核表達。正常的MK4細胞有典型的上皮細胞型態,並有myosin IIB接在細胞骨架上形成完整的細胞連結。在IPTG 的作用下,過度表達Ha-RasV12造成細胞連結鬆散和myosin IIB異位,進而造成YAP的入核表達,然而在過度表達Cav1之後,則可以避免這些現象產生。在Cav1缺失的細胞當中,也可以發現細胞連結鬆散以及myosin IIB 異位,並且造成YAP入核的現象。用肌動蛋白張力抑制劑像是ML7 和Blebbistatin 來抑制肌動蛋白張力之後,也會降低myosin IIB 在細胞連結處的表達,以及促進YAP 入核。Cav1 被發現和調控ERK活性有關。我們也發現U0126 (MEK抑制劑)可以有效的抑制Ha-RasV12過度表達以及Cav1 缺失所誘導的YAP 入核表達。被正常細胞包圍的YAP 入核的細胞傾向於被擠出上方。Ha-RasV12 過度表達會造成細胞形成頂端的細胞堆疊。然而,使用Verteporfin 抑制YAP 的活性並沒有辦法抑制Ha-RasV12過度表達造成的細胞堆疊,且在細胞堆疊的區域,YAP 表達在細胞質當中。此外,EHT1864 (Rac inhibitor) 能有效的抑制Ha-RasV12過度表達所造成的細胞堆疊,但無法抑制YAP的入核表達。總結來說,這些結果顯示Cav1在穩定細胞連結的完整性當中扮演很重要的角色,進而調控YAP 的入核表達。然而,細胞堆疊的形成需要Rac的活性而非YAP入核。

    Our previous study showed that Ha-RasV12 overexpression induced nuclear translocation of hippo effector Yes-associated protein (YAP) in MDCK cells via hippo-independent pathway even at confluent stage. Ha-RasV12 overexpression leads to downregulation of caveolin-1 (Cav1) and disruption of junction integrity. Cav1 was reported to recruit E-cadherin/β-catenin complex and stabilize cell junction. Furukawa et al. showed that disruption of actomyosin tension in cell junction caused YAP nuclear localization in epithelial cells under high density. We hypothesize that Ha-RasV12-decreased Cav1 leads to the lessened of actomyosin tension, which subsequently facilitates YAP nuclear localization. MK4 cells exhibits typical epithelial colonies with well-organized junctional actin belts lined with myosin IIB. Upon IPTG administration, Ha-RasV12 overexpression resulted in YAP nuclear translocation and loosened cell junction with disturbed distribution of myosin IIB, which is prevented by overexpression of Cav1. Cav1 knockdown showed loosened cell junction with disturbed distribution of myosin IIB and the augmentation of YAP nuclear localization. Treatment of actomyosin tension inhibitors, including ML7 (myosin light chain kinase inhibitor), blebbistatin (myosin II inhibitor), induced YAP nuclear translocation and disturbed distribution of myosin IIB in confluent MK4 cells. The regulation of ERK activation has been found related to Cav1. U0126 (MEK inhibitor) abolished Ha-RasV12 overexpression- and Cav1 absence-induced YAP nuclear translocation, suggesting that MEK signaling is required for Ha-RasV12-induced YAP nuclear translocation. Ha-RasV12 overexpressing cells exhibited apically cellular aggregates in overconfluent MK4 cells. Inhibition of YAP activity by verteporfin did not abolish Ha-RasV12-induced cellular aggregates. Immunostaining results showed that cells in aggregate area displayed cytosolic YAP, but not nuclear YAP. Although inhibition of Rac activity by EHT1864 inhibited Ha-RasV12-induced cellular aggregate, it did not change RasV12-induced YAP nuclear translocation. Taken together, these data suggest that Cav1 functions to stabilize cell junction integrity, which tends to retains YAP in the cytosol in confluent MDCK cells. Moreover, Rac activity, but not nuclear YAP, seems to be more important for multilayer cellular aggregates formation.

    ABSTRACT…………………………………………………………………………...……I 中文摘要…………………………………………………………………………...……II 致謝…………………………………………………………………………...........……III CONTENT…………………………………………………………………………...……IV FIGURE CONTENT………………………...……………………………………..V INTRODUCTION……………………………………………………………………6 MATERIALS AND METHODS………………………………………………...…11 RESULT…………………………………………………………….........…………… 15 DISCUSSION……………………………………………………………………...……24 REFERENCES……………………………………………………………………...……27 FIGURE LEGENDS……………………………………………………………...……37

    Acharya, B.R., Wu, S.K., Lieu, Z.Z., Parton, R.G., Grill, S.W., Bershadsky, A.D., Gomez, G.A., and Yap, A.S. (2017). Mammalian Diaphanous 1 Mediates a Pathway for E-cadherin to Stabilize Epithelial Barriers through Junctional Contractility. Cell Rep 18, 2854-2867.
    Ahmadian, M.R., Stege, P., Scheffzek, K., and Wittinghofer, A. (1997). Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat Struct Biol 4, 686-689.
    Anderson, R.G. (1998). The caveolae membrane system. Annu Rev Biochem 67, 199-225.
    Aragona, M., Panciera, T., Manfrin, A., Giulitti, S., Michielin, F., Elvassore, N., Dupont, S., and Piccolo, S. (2013). A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154, 1047-1059.
    Avruch, J., Zhou, D., Fitamant, J., Bardeesy, N., Mou, F., and Barrufet, L.R. (2012). Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 23, 770-784.
    Bernards, A., and Settleman, J. (2004). GAP control: regulating the regulators of small GTPases. Trends Cell Biol 14, 377-385.
    Betapudi, V. (2014). Life without double-headed non-muscle myosin II motor proteins. Front Chem 2, 45.
    Biankin, A.V., Waddell, N., Kassahn, K.S., Gingras, M.C., Muthuswamy, L.B., Johns, A.L., Miller, D.K., Wilson, P.J., Patch, A.M., Wu, J., et al. (2012). Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399-405.
    Bos, J.L., Rehmann, H., and Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865-877.
    Braga, V.M., Del Maschio, A., Machesky, L., and Dejana, E. (1999). Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol Biol Cell 10, 9-22.
    Bryant, K.L., Mancias, J.D., Kimmelman, A.C., and Der, C.J. (2014). KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci 39, 91-100.
    Burgermeister, E., Friedrich, T., Hitkova, I., Regel, I., Einwachter, H., Zimmermann, W., Rocken, C., Perren, A., Wright, M.B., Schmid, R.M., et al. (2011). The Ras inhibitors caveolin-1 and docking protein 1 activate peroxisome proliferator-activated receptor gamma through spatial relocalization at helix 7 of its ligand-binding domain. Mol Cell Biol 31, 3497-3510.
    Butcher, D.T., Alliston, T., and Weaver, V.M. (2009). A tense situation: forcing tumour progression. Nat Rev Cancer 9, 108-122.
    Callus, B.A., Verhagen, A.M., and Vaux, D.L. (2006). Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J 273, 4264-4276.
    Calvo, F., Ege, N., Grande-Garcia, A., Hooper, S., Jenkins, R.P., Chaudhry, S.I., Harrington, K., Williamson, P., Moeendarbary, E., Charras, G., et al. (2013). Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15, 637-646.
    Carver, L.A., and Schnitzer, J.E. (2003). Caveolae: mining little caves for new cancer targets. Nat Rev Cancer 3, 571-581.
    Cerezo, A., Guadamillas, M.C., Goetz, J.G., Sanchez-Perales, S., Klein, E., Assoian, R.K., and del Pozo, M.A. (2009). The absence of caveolin-1 increases proliferation and anchorage- independent growth by a Rac-dependent, Erk-independent mechanism. Mol Cell Biol 29, 5046-5059.
    Chen, C.S., Tan, J., and Tien, J. (2004). Mechanotransduction at cell-matrix and cell-cell contacts. Annu Rev Biomed Eng 6, 275-302.
    Chen, J.C., Zhuang, S., Nguyen, T.H., Boss, G.R., and Pilz, R.B. (2003). Oncogenic Ras leads to Rho activation by activating the mitogen-activated protein kinase pathway and decreasing Rho-GTPase-activating protein activity. J Biol Chem 278, 2807-2818.
    Ching, Y.-P., Yu, H., Shen, H., Zhang, Y., Zhong, F., Liu, Y., Qin, L., and Yang, P. (2014). CAV1 Promotes HCC Cell Progression and Metastasis through Wnt/β-Catenin Pathway. PLoS ONE 9.
    Codelia, V.A., Sun, G., and Irvine, K.D. (2014). Regulation of YAP by mechanical strain through Jnk and Hippo signaling. Curr Biol 24, 2012-2017.
    Cohen, A.W., Park, D.S., Woodman, S.E., Williams, T.M., Chandra, M., Shirani, J., Pereira de Souza, A., Kitsis, R.N., Russell, R.G., Weiss, L.M., et al. (2003). Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 284, C457-474.
    Diaz, J., Mendoza, P., Ortiz, R., Diaz, N., Leyton, L., Stupack, D., Quest, A.F., and Torres, V.A. (2014). Rab5 is required in metastatic cancer cells for Caveolin-1-enhanced Rac1 activation, migration and invasion. J Cell Sci 127, 2401-2406.
    Doehn, U., Hauge, C., Frank, S.R., Jensen, C.J., Duda, K., Nielsen, J.V., Cohen, M.S., Johansen, J.V., Winther, B.R., Lund, L.R., et al. (2009). RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate promotile/invasive gene program and phenotype in epithelial cells. Mol Cell 35, 511-522.
    Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., Zanconato, F., Le Digabel, J., Forcato, M., Bicciato, S., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature 474, 179-183.
    Ebrahim, S., Fujita, T., Millis, B.A., Kozin, E., Ma, X., Kawamoto, S., Baird, M.A., Davidson, M., Yonemura, S., Hisa, Y., et al. (2013). NMII forms a contractile transcellular sarcomeric network to regulate apical cell junctions and tissue geometry. Curr Biol 23, 731-736.
    El-Gendi, S.M., Mostafa, M.F., and El-Gendi, A.M. (2012). Stromal caveolin-1 expression in breast carcinoma. Correlation with early tumor recurrence and clinical outcome. Pathol Oncol Res 18, 459-469.
    Engelman, J.A., Zhang, X.L., Galbiati, F., and Lisanti, M.P. (1998). Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Lett 429, 330-336.
    Engelman, J.A., Zhang, X.L., Razani, B., Pestell, R.G., and Lisanti, M.P. (1999). p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. J Biol Chem 274, 32333-32341.
    Fiucci, G., Ravid, D., Reich, R., and Liscovitch, M. (2002). Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 21, 2365-2375.
    Freeman, M.R., Yang, W., and Di Vizio, D. (2012). Caveolin-1 and prostate cancer progression. Adv Exp Med Biol 729, 95-110.
    Furukawa, K.T., Yamashita, K., Sakurai, N., and Ohno, S. (2017). The Epithelial Circumferential Actin Belt Regulates YAP/TAZ through Nucleocytoplasmic Shuttling of Merlin. Cell Rep 20, 1435-1447.
    Galbiati, F., Volonte, D., Brown, A.M., Weinstein, D.E., Ben-Ze'ev, A., Pestell, R.G., and Lisanti, M.P. (2000). Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. J Biol Chem 275, 23368-23377.
    Galbiati, F., Volonte, D., Engelman, J.A., Watanabe, G., Burk, R., Pestell, R.G., and Lisanti, M.P. (1998). Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 17, 6633-6648.
    Gosens, R., Stelmack, G.L., Dueck, G., McNeill, K.D., Yamasaki, A., Gerthoffer, W.T., Unruh, H., Gounni, A.S., Zaagsma, J., and Halayko, A.J. (2006). Role of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 291, L523-534.
    Goulev, Y., Fauny, J.D., Gonzalez-Marti, B., Flagiello, D., Silber, J., and Zider, A. (2008). SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Curr Biol 18, 435-441.
    Halder, G., and Johnson, R.L. (2011). Hippo signaling: growth control and beyond. Development 138, 9-22.
    Hamaratoglu, F., Willecke, M., Kango-Singh, M., Nolo, R., Hyun, E., Tao, C., Jafar-Nejad, H., and Halder, G. (2006). The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8, 27-36.
    Hao, Y., Chun, A., Cheung, K., Rashidi, B., and Yang, X. (2008). Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283, 5496-5509.
    Harvey, K.F., Pfleger, C.M., and Hariharan, I.K. (2003). The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457-467.
    Harvey, K.F., Zhang, X., and Thomas, D.M. (2013). The Hippo pathway and human cancer. Nat Rev Cancer 13, 246-257.
    Helfman, D.M., and Pawlak, G. (2005). Myosin light chain kinase and acto-myosin contractility modulate activation of the ERK cascade downstream of oncogenic Ras. J Cell Biochem 95, 1069-1080.
    Huang, J., Wu, S., Barrera, J., Matthews, K., and Pan, D. (2005). The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421-434.
    Jianmin, Z., Hongfang, W., and Meifu, F. (2002). Resistance of multicellular aggregates to pharmorubicin observed in human hepatocarcinoma cells. Braz J Med Biol Res 35, 255-260.
    Joshi, B., Strugnell, S.S., Goetz, J.G., Kojic, L.D., Cox, M.E., Griffith, O.L., Chan, S.K., Jones, S.J., Leung, S.P., Masoudi, H., et al. (2008). Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res 68, 8210-8220.
    Kim, Choi, and Mo (2019). Role of the Hippo Pathway in Fibrosis and Cancer. Cells 8.
    Kim, N.G., Koh, E., Chen, X., and Gumbiner, B.M. (2011). E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci USA 108, 11930-11935.
    Koleske, A.J., Baltimore, D., and Lisanti, M.P. (1995). Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci USA 92, 1381-1385.
    Lecuit, T., and Yap, A.S. (2015). E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat Cell Biol 17, 533-539.
    Lei, Q.Y., Zhang, H., Zhao, B., Zha, Z.Y., Bai, F., Pei, X.H., Zhao, S., Xiong, Y., and Guan, K.L. (2008). TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28, 2426-2436.
    Li, L., Yang, G., Ebara, S., Satoh, T., Nasu, Y., Timme, T.L., Ren, C., Wang, J., Tahir, S.A., and Thompson, T.C. (2001). Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res 61, 4386-4392.
    Lin, H.H., Lin, H.K., Lin, I.H., Chiou, Y.W., Chen, H.W., Liu, C.Y., Harn, H.I., Chiu, W.T., Wang, Y.K., Shen, M.R., et al. (2015). Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing. Oncotarget 6, 20946-20958.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-275.
    Meng, Z., Moroishi, T., and Guan, K.L. (2016). Mechanisms of Hippo pathway regulation. Genes Dev 30, 1-17.
    Meshel, A.S., Wei, Q., Adelstein, R.S., and Sheetz, M.P. (2005). Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol 7, 157-164.
    Miyazono, K., Katsuno, Y., Koinuma, D., Ehata, S., and Morikawa, M. (2018). Intracellular and extracellular TGF-beta signaling in cancer: some recent topics. Front Med 12, 387-411.
    Moreno-Vicente, R., Pavon, D.M., Martin-Padura, I., Catala-Montoro, M., Diez-Sanchez, A., Quilez-Alvarez, A., Lopez, J.A., Sanchez-Alvarez, M., Vazquez, J., Strippoli, R., et al. (2018). Caveolin-1 Modulates Mechanotransduction Responses to Substrate Stiffness through Actin-Dependent Control of YAP. Cell Rep 25, 1622-1635.
    Moroishi, T., Hansen, C.G., and Guan, K.L. (2015). The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer 15, 73-79.
    Navarro, A., Anand-Apte, B., and Parat, M.O. (2004). A role for caveolae in cell migration. FASEB J 18, 1801-1811.
    Nestl, A., Von Stein, O.D., Zatloukal, K., Thies, W.G., Herrlich, P., Hofmann, M., and Sleeman, J.P. (2001). Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res 61, 1569-1577.
    Nguyen, C.D.K., and Yi, C. (2019). YAP/TAZ Signaling and Resistance to Cancer Therapy. Trends Cancer 5, 283-296.
    Panciera, T., Azzolin, L., Cordenonsi, M., and Piccolo, S. (2017). Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 18, 758-770.
    Parton, R.G., and Simons, K. (2007). The multiple faces of caveolae. Nat Rev Mol Cell Biol 8, 185-194.
    Patani, N., Martin, L.A., Reis-Filho, J.S., and Dowsett, M. (2012). The role of caveolin-1 in human breast cancer. Breast Cancer Res Treat 131, 1-15.
    Piccolo, S., Cordenonsi, M., and Dupont, S. (2013). Molecular pathways: YAP and TAZ take center stage in organ growth and tumorigenesis. Clin Cancer Res 19, 4925-4930.
    Praskova, M., Xia, F., and Avruch, J. (2008). MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol 18, 311-321.
    Quinlan, M.P. (1999). Rac regulates the stability of the adherens junction and its components, thus affecting epithelial cell differentiation and transformation. Oncogene 18, 6434-6442.
    Radu, M., Semenova, G., Kosoff, R., and Chernoff, J. (2013). PAK signalling during the development and progression of cancer. Nat Rev Cancer 14, 13-25.
    Razandi, M., Oh, P., Pedram, A., Schnitzer, J., and Levin, E.R. (2002). ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol Endocrinol 16, 100-115.
    Repasky, G.A., Chenette, E.J., and Der, C.J. (2004). Renewing the conspiracy theory debate: does Raf function alone to mediate Ras oncogenesis? Trends Cell Biol 14, 639-647.
    Robinson, B.S., and Moberg, K.H. (2011). Cell-cell junctions: alpha-catenin and E-cadherin help fence in Yap1. Curr Biol 21, R890-892.
    Rodgers, L.S., and Fanning, A.S. (2011). Regulation of epithelial permeability by the actin cytoskeleton. Cytoskeleton (Hoboken) 68, 653-660.
    Sabra, H., Brunner, M., Mandati, V., Wehrle-Haller, B., Lallemand, D., Ribba, A.S., Chevalier, G., Guardiola, P., Block, M.R., and Bouvard, D. (2017). beta1 integrin-dependent Rac/group I PAK signaling mediates YAP activation of Yes-associated protein 1 (YAP1) via NF2/merlin. J Biol Chem 292, 19179-19197.
    Samarin, S., and Nusrat, A. (2009). Regulation of epithelial apical junctional complex by Rho family GTPases. Front Biosci (Landmark Ed) 14, 1129-1142.
    Sasai, K., Kakumoto, K., Hanafusa, H., and Akagi, T. (2006). The Ras-MAPK pathway downregulates Caveolin-1 in rodent fibroblast but not in human fibroblasts: implications in the resistance to oncogene-mediated transformation. Oncogene 26, 449-455.
    Schmidt, A., and Hall, A. (2002). Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16, 1587-1609.
    Schubbert, S., Shannon, K., and Bollag, G. (2007). Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7, 295-308.
    Shreberk-Shaked, M., and Oren, M. (2019). New insights into YAP/TAZ nucleo-cytoplasmic shuttling: new cancer therapeutic opportunities? Mol Oncol 13, 1335-1341.
    Sudol, M. (1994). Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9, 2145-2152.
    Taha, Z., Janse van Rensburg, H.J., and Yang, X. (2018). The Hippo Pathway: Immunity and Cancer. Cancers (Basel) 10.
    Tang, Y., Rowe, R.G., Botvinick, E.L., Kurup, A., Putnam, A.J., Seiki, M., Weaver, V.M., Keller, E.T., Goldstein, S., Dai, J., et al. (2013). MT1-MMP-dependent control of skeletal stem cell commitment via a beta1-integrin/YAP/TAZ signaling axis. Dev Cell 25, 402-416.
    Totaro, A., Panciera, T., and Piccolo, S. (2018). YAP/TAZ upstream signals and downstream responses. Nat Cell Biol 20, 888-899.
    Vered, M., Lehtonen, M., Hotakainen, L., Pirilä, E., Teppo, S., Nyberg, P., Sormunen, R., Zlotogorski-Hurvitz, A., Salo, T., and Dayan, D. (2015). Caveolin-1 accumulation in the tongue cancer tumor microenvironment is significantly associated with poor prognosis: an in-vivo and in-vitro study. BMC Cancer 15.
    Vicente-Manzanares, M., Ma, X., Adelstein, R.S., and Horwitz, A.R. (2009). Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10, 778-790.
    Wada, K., Itoga, K., Okano, T., Yonemura, S., and Sasaki, H. (2011). Hippo pathway regulation by cell morphology and stress fibers. Development 138, 3907-3914.
    Wiechen, K., Diatchenko, L., Agoulnik, A., Scharff, K.M., Schober, H., Arlt, K., Zhumabayeva, B., Siebert, P.D., Dietel, M., Schafer, R., et al. (2001). Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol 159, 1635-1643.
    Williams, T.M., and Lisanti, M.P. (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 288, C494-506.
    Xia, M., and Land, H. (2007). Tumor suppressor p53 restricts Ras stimulation of RhoA and cancer cell motility. Nat Struct Mol Biol 14, 215-223.
    Xu, H., Zhou, S., Xia, H., Yu, H., Tang, Q., and Bi, F. (2019). MEK nuclear localization promotes YAP stability via sequestering beta-TrCP in KRAS mutant cancer cells. Cell Death Differ.
    Yam, J.W., Chan, K.W., and Hsiao, W.L. (2001). Suppression of the tumorigenicity of mutant p53-transformed rat embryo fibroblasts through expression of a newly cloned rat nonmuscle myosin heavy chain-B. Oncogene 20, 58-68.
    Yang, G., Truong, L.D., Timme, T.L., Ren, C., Wheeler, T.M., Park, S.H., Nasu, Y., Bangma, C.H., Kattan, M.W., Scardino, P.T., et al. (1998). Elevated expression of caveolin is associated with prostate and breast cancer. Clin Cancer Res 4, 1873-1880.
    Zhang, H., Liu, C.Y., Zha, Z.Y., Zhao, B., Yao, J., Zhao, S., Xiong, Y., Lei, Q.Y., and Guan, K.L. (2009). TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem 284, 13355-13362.
    Zhang, L., Yang, S., Chen, X., Stauffer, S., Yu, F., Lele, S.M., Fu, K., Datta, K., Palermo, N., Chen, Y., et al. (2015). The hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells. Mol Cell Biol 35, 1350-1362.
    Zhang, X., Xu, L.H., and Yu, Q. (2010). Cell aggregation induces phosphorylation of PECAM-1 and Pyk2 and promotes tumor cell anchorage-independent growth. Mol Cancer 9, 7.
    Zhang, X., Zhao, H., Li, Y., Xia, D., Yang, L., Ma, Y., and Li, H. (2018). The role of YAP/TAZ activity in cancer metabolic reprogramming. Mol Cancer 17, 134.
    Zhao, B., Li, L., Lu, Q., Wang, L.H., Liu, C.Y., Lei, Q., and Guan, K.L. (2011). Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev 25, 51-63.
    Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J.D., Wang, C.Y., Chinnaiyan, A.M., et al. (2008). TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22, 1962-1971.
    Zhao, Z.S., and Manser, E. (2005). PAK and other Rho-associated kinases--effectors with surprisingly diverse mechanisms of regulation. Biochem J 386, 201-214.
    Zhong, C., Chrzanowska-Wodnicka, M., Brown, J., Shaub, A., Belkin, A.M., and Burridge, K. (1998). Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J Cell Biol 141, 539-551.

    無法下載圖示 校內:2024-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE