簡易檢索 / 詳目顯示

研究生: 陳逸炘
Chen, Yi-Hsin
論文名稱: 發展糖化血紅素導電性分子模版之生物感測器
The Development of Hemoglobin-A1c Conductive Molecularly Imprinted Polymer Biosensor
指導教授: 周澤川
Chou, Tse-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 140
中文關鍵詞: 糖化血紅素分子模版感測器
外文關鍵詞: sensor, molecularly imprinted polymer, HbA1c
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以發展糖化血紅素分子模版感測電極為主要目標,架構分子模版電極時,以定電流聚合導電性高分子模版,以砒咯單體為主,然後以鐵氰化鉀 (K3Fe(CN)6) 與亞鐵氰化鉀 (K4Fe(CN)6) 的氧化還原反應做為電流感測之指示劑,並配合循環伏安法來記錄氧化還原峰值。首先先研究聚砒咯在不同厚度(聚合時間)以及電流密度時,對鐵氰化鉀與亞鐵氰化鉀的氧化還原,發現在定電流超過 3µA 後,氧化還原峰值從17~19µA 掉至 4~6µA,而聚合時間在超過 180秒之後,加入糖化血紅素時,無法產生訊號。研究糖化血紅素是否會在聚砒咯膜上在 -0.2~0.6V vs. Ag/AgCl 之間是否會氧化還原反應,發現作了清洗前、後還有再吸附都發現無氧化還原。還有再吸附不同時間的氧化峰值約在1個小時後便達飽和。
    再吸附不同濃度糖化血紅素發現在約 0~60 µg/ml 得到線性關係較佳。從飽和吸附曲線,我門按照 Scatchard plot 的公式

    [B] 是吸附在分子模版上的目標物濃度, [F] 是在未鍵結餘分子模版的目標物濃度, Kd是解離平衡常數,N 是辨識性孔洞總量,因此做 [B]/[F] 對 [B] 的圖,線性迴歸後可得 Kd 以及 N ,在本實驗中我門得到 Kd= 1250 µg/ml,N=187.75 µg/ml。在選擇性方面我門做了血紅素與糖化血紅素,選擇比率約0.44,還有糖化血紅素對免疫球蛋白 ( IgG )、溶菌酶( Lysozyme )、人血清白蛋白 ( HSA ),選擇比率各約0.38、0.68、0.54。後面並附上一些分子模版表面觀察。並有與崑山科技大學電機系黃俊岳教授的碩士班張志弘同學合作,他製作 home-made potential state 接上糖化血紅素分子模版電極後來量測糖化血紅素,經修正後得到較好的圖。另還有與成功大學工程科學系李國賓教授的碩士班學生黃朝均同學合作微流體血糖感測器。

    In this research, we develop Hemoglobin-A1c MIP sensor for purpose, to construct this MIP sensor, we choose Pyrrole as a monomer, generate a template by galvanostatic electropolymerization, then consider red prussiate of potash and yellow prussiate of Potash as indicator for sensing Hemoglobin-A1c, we record the redox current by Cyclic Voltammetry. We study first is that different film thickness versus redox current and different applied current for electropolymerization versus redox current, we find that we can’t sense redox current when electropolymerization over 180sec with HbA1c, and the applied current over 3µA, the redox current reduce from 17~19µA to 4~6µA . And we also study if we just use HbA1c on Polypyrrole film based on Pt electrode to scan CV how the redox current change, compare the before wash, after wash and rebinding HbA1c redox current, all redox current can’t be seen.
    Study the linearity of different rebinding Hba1c concentration versus decrease current, we got better linearity between 0 to 60 µg/ml. And before we illustrate scathchard plot, need make saturated curve first then take the data to scatchard plot equation

    There [B] is target concentration adsorbed on MIP surface, [F] is the target concentration of unbind HbA1c in solution, Kd is dissociation constant, N is selective porous on MIP surface, so we take [B]/[F] versus [B] to make a curve, after linear regression we can get the slope and intercept, Kd=1250µg/ml, N=187.75µg/ml. Also we research how’s the selectivity of Hb/HbA1c, IgG/HbA1c, Lysozyme/HbA1c, HAS/HbA1c , and we got 0.44, 0.38, 0.68 and 0.54 respectly.
    In the last study, I have some data from cooperation with the E.E graduate student C. H Chang of Prof. C. Y. Huang from KunShan university, he develop a home-made potential state, and we compare the data with EG&G 263A potential state. The other hand we also cooperate with E. S. graduate student C. J. Huang of Prof. G. B. Lee from ChengKung university, we develop a microfluidic system for sensing glucose.

    中文摘要 ……………………………………………… Ⅰ 英文摘要 ……………………………………………… Ⅲ 誌謝 …………………………………………… … Ⅴ 目錄 ……………………………………………… Ⅵ 表目錄 …………………………………………… … Ⅹ 圖目錄 ……………………………………………… ⅩⅠ 符號說明 ……………………………………………… ⅩⅥ 本文 第一章 緒論………………………………………………………1 1 -1 生化感測器…………………………………………………1 1-1-1 生化感測器之優點…………………………………………3 1 -2 電化學感測器………………………………………………4 1-2-1 簡介………………………………………………………4 1-2-2 電流式感測…………………………………………………4 1-2-3 電位式感測…………………………………………………5 1-2-4 電導式感測…………………………………………………6 1 -3 蛋白質固定化………………………………………………7 1-3-1 簡介…………………………………………………………7 1-3-2 吸附法………………………………………………………8 1-3-3 膠囊法………………………………………………………8 1-3-4 圈入法………………………………………………………9 1-3-5 化學鍵結法…………………………………………………10 1-3-6 交連架橋法…………………………………………………10 1 -4 糖尿病………………………………………………………11 1-4-1 簡介…………………………………………………………11 1-4-2 糖尿病類型…………………………………………………12 1-4-3 糖尿病檢測…………………………………………………13 1 -5 糖化血紅素…………………………………………………15 1-4-1 糖化血紅素簡介……………………………………………15 1-4-1 糖化血紅素結構……………………………………………16 1-4-1 糖化血紅素與血糖的關聯…………………………………19 1-4-1 糖化血紅素量測……………………………………………19 1 -6 研究動機與目的……………………………………………30 第二章 原理………………………………………………………31 2 -1 分子模版……………………………………………………31 2-1-1 分子模版原理………………………………………………31 2-1-2 分子模版材料………………………………………………35 2-1-3 分子模版的應用在生化感測器上…………………………39 2 -2 導電性高分子………………………………………………43 2-2-1 簡介…………………………………………………………43 2-2-2 導電性高分子電性…………………………………………45 2-2-3 導電性高分子應用…………………………………………46 2-2-4 聚砒咯 (polypyrrole)……………………………………47 2 -3 分子模版的吸附與動力式…………………………………49 2-3-1 吸附分析……………………………………………………49 2 -4 電流式感測原理……………………………………………52 2-3-1 電極反應與電流的關係……………………………………52 2-3-1 電流感測的原理……………………………………………53 第三章 實驗方法…………………………………………………57 3 -1 藥品器材與儀器設備………………………………………57 3-1-1 藥品…………………………………………………………57 3-1-2 儀器設備……………………………………………………59 3 -2 設備裝置圖…………………………………………………60 3 -3 糖化血紅素分子模版電極之製備…………………………63 3-3-1 工作電極之前處理…………………………………………63 3-3-2 電聚合製備分子模版電極…………………………………64 3-3-3 洗除電聚合製備的分子模版電極上殘留之目標物………64 3 -4 糖化血紅素分子模版電極之電化學測試…………………64 3 -5 糖化血紅素分子模版電極目標物再吸附…………………65 3 -6 糖化血紅素分子模版電極再吸附後電化學測試…………65 3 -7 吸附值的計算………………………………………………65 3 -8 糖化血紅素分子模版電極表面觀察………………………66 3 -9 用掌上型電位儀來做 MIP-Polypyrrole 電極感測………66 第四章 結果與討論………………………………………………68 4 -1 糖化血紅素在鉑電極表面之循環伏安圖…………………68 4 -2 定電流電聚合砒咯製作糖化血紅素分子模版在鉑電極上的V-t圖……………………………………………………………………70 4 -3 電聚合砒咯膜厚對鐵氰化鉀與亞鐵氰化鉀氧化還原的影響……………………………………………………………………73 4 -4 不同電流密度電聚合砒咯鐵氰化鉀與亞鐵氰化鉀氧化還原的影響……………………………………………………………………79 4 -5 分子模版不同再吸附時間對感測訊號的影響……………83 4 -6 不同電流密度製備糖化血紅素分子模版表面SEM圖………85 4 -7 糖化血紅素與血紅素之UV-Vis圖…………………………88 4 -8 分子模版再吸附不同濃度之糖化血紅素…………………90 4 -9 分子模版對糖化血紅素之飽和吸附曲線與Scatchard plot…93 4 -10 分子模版對糖化血紅素與血紅素之選擇性測試…………96 4 -11 分子模版對血液中干擾物之選擇性測試…………………99 4 -12 聚砒咯修飾電極在不同PH對糖化血紅素吸附測試………102 4 -13 在製備分子模版中添加戊二醛作干擾物測試……………104 4 -14 用光學顯微鏡觀察分子模版表面…………………………106 4 -15 掌上型電位儀測試…………………………………………109 第五章 總結論與未來工作………………………………………115 參考文獻……………………………………………………………118 附錄…………………………………………………………………124 自述…………………………………………………………………140

    1 Bard, A. J. and Faulkner, I. R., ”Electrochemical Methods Fundaments and applications”, Wiley, New York, 1980.
    2 Gamati S., Luong J. H. T. and Mulchandani A.,”A microbial biosensor for trimethyamine using Pseudomonas aminovirans cells”, Biosensors and Bioelectron., 6, 125-131, 1991.
    3 Jones T. P. and Porter M. D., ”Optical pH sensor based on the chemical modification of a porous polymer”, Anal. Chem., 60, 404-406, 1988.
    4 Zhujun Z. and Seitz W. R., “Optical sensor for oxygen based on immobilized hemoglobin”, Anal. Chem., 58, 220-222, 1986.
    5 Josefina Parellada, Arantzazu Narvaez, Elena Dominguez and Ioanis Katakis, ”A new type of hydrophilic carbon paste electrodes for biosensor manufacturing: binder paste electrodes”, Biosensors and
    Bioelectronics, Vol. 12. No. 4, 267-275, 1997.
    6 Quilbault G. G. and Montalvo J. G. Jr., “A area-specific enzyme electrode”, J. Am. Chem. Soc., 91 2164-2165, 1969.
    7 Subrayal. M. Reddy and Pankaj Vadgama, “Entrpment of GODx in non porous PVC”, Analytica. Chimica Acta, 461, 57-64, 2002.
    8 Rajesb Vaidya and Entisam Wilkins, “Effect of interference of amperometric glucose biosensors with cellulose acetate membrane”, Electroanalysis, 6, 677-682, 1994.
    9 Li, J., Chia, L.S., Goh, N.K., Tan, S.N., “Renewable silica sol-gel derived composite based glucose biosensor”, J. Electroanal. Chem., Vol. 460, 234-241, 1999.
    10 Nicola C. Foulds and Christopher R. Lowe, J. Chem. Soc. Faraday
    Trans., 1, 82, 1259, 1986.
    11 M. Umaòa and J. Waller, Anal. Chem., 58, 2979, 1986.
    12 Cabral J. M. S. and Kennedy J. F., “Covalent and coordination immobilization of proteins” Protein Immobilization: Research, Developments and Applications, ed R. F. Taylor (New York; Dekker), 73-183, 1991.
    13 Taylor R. F., “Development and applications of antibody- and receptor-based biosensors Bioinstrumentation: Research, Developments and Applications”, ed D. L. Wise (Boston, MA; Butterworths, 355-412.
    14 Tamiya E., Siura Y., Akiyama A. and Karube I., ”Ultramicro-H2O2 electrode for fabrication of the in vivo biosensor”. Ann. NY Acad. Sci., 613, 396-400, 1990.
    15 Surridge N. A., Debold E. R., Chang J. and Neudeck G. W., ” Electron-transport rates in an enzyme electrode for glucose” Diagnostic Biosensors Polymers ed A. M. Usmani and N. Akmal, 47-70.
    16 台北榮總新陳代謝科 http://www.vghtpe.gov.tw/~meta/dm.htm
    17 Bulletin 9282 s1, Beckman Coulter, Inc.
    18 Diabetes Care 1999;22 (Suppl. 1):S32-S41
    19 http://www.canterburyscientific.com/.
    20 Rodney Boyer, Concepts in Biochemistry.
    21 http://www.primushplc.com/primus/products/a1c/pdq/, primus corporation.
    22 Daniela Stöllner, Walter S., Frieder S., Axel Warsinke, “Membrane-immobilized haptoglobin as affinity matrix for a hemoglobin-A1c immuosensor”, Analytica Chimica Acta, 470, 111-119, 2002
    23 Daniela Stöllner, Axel Warsinke, Walter S., Rudolf D., “Immunochemical Determination of Hemoglobin-A1c Utilizing a Glycated Peptide as Hemoglobin-A1c Analogon”, biosensor stmposium, TÜBINGEN, 2001.
    24 Koji Sode, Yuka T., Shigenori O., Wakako T., Tomohiko Y., “A new concept for the construction of an artificial dehydrogenase for fructosylamine compounds and its application for an amperometric fructosylamine sensor” , Analytica Chimica Actas, 435, 151-156, 2001.
    25 Koji Sode, Shigenori O., Yoshitsugu Y., Tomohiko Y., “Construction of a molecular imprinting catalyst using target analogue template and its application for an amperometric fructosylamine sensor”, Biosensors and Bioelectronics, 18, 1485-1490, 2003.
    26 Metrica Inc. http://www.metrika.com/index.php
    27 汪玉銘,”定電流聚合導電性高分子法製備葡萄糖生物感測器之研究”,成功大學化工博士論文,6-27, 2003。
    28 B. Sellergren, molecularly Imprinted Polymers, Elsevier Science, Amsterdam, Netherlands (2001).
    29 H. andersson, K. Haupt, C. Allender, c. Alexander, M. Whotcombe, S. Piletsky, B. Sellergren, I. Nicholls, Fundamentals of Molecular Imprinted, Notees of MIP 2002 Pre-conference course, Second International Workshop on Molecularly imprinted Polymers, La Grande Mote, France sept. 16-19th, (2002).
    30 http://www.smi.tu-berlin.de/story/MIT.htm.
    31 http://www.chemistry.wustl.edu/~edudev/LabTutorials/HIV/DrugStrategies.html
    32 Paul, L., Campbell D., “The manufacture of antibodies in vitro”, J. Exper Med, 76, 21200, 1942.
    33 G. Wulff, “Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies”, Angewandte Chemie (international Edition in English), 37, 1812-1832, 1995.
    34 D. Kris, K. Mosbach, “Competitive amperometric morphine sensor based on an agarose immobilized molecularly imprinted polymer”, Analytica Chimica Acta, vol. 300, 71-75, 1995.
    35 S.A. Piletsky, E.V Piletskaya, A.V. Elgersma, K. Yano, I. Karube, “Atrazine sensing by molecularly imprinted membranes”, Bioensor and bioelectronics, vol. 10, 959-964, 1995.
    36 P.S. reddy, T. Kobayashi, N. Fuji, “Molecular imprinting in hydrogen bonding networks of polyamide nylon for recognition of amino acids”, Journal of Applied Polymer Science, vol. 68, 1863-1866, 1998.
    37 R. Ardhady, “functional monomers”, Journal of Macromolecular Science-Reviews in Macromolecular chemistry and Physics, vol. 32, 101-132, 1992.
    38 P.A.G. Cormack, A.Z. Elorza, “molecularly imprinted polymers: synthesis and characterization”, journal of chromatography B, vol. 804, 173-182, 2004.
    39 Hedborg, E., Winquist F., Lundstrom I., Anderson L., Mosbach K., “Some studies of molecularly-imprinted polymer memebranes in combination with field-effect devices”, Sens. Actuator A-Phy., 38, 796, 1993.
    40 Malitesta C., Losito I., Zambonin P. G., “Molecularly imprintedelectrosynthesized polymers: new materials for biomimetic sensors”, Anal. Chem., 71, 1366, 1999.
    41 Levi R., mcniven S., Piletsky S. A., Cheong S. H., Yano K., Karube I.,”Optical detection of chloramphenicol using molecularly imprinted polymers”, Anal. Chem., 69, 2017, 1997.
    42 Kriz D., Ramstrom O., Svensson A., Mosbach K., “Introducing biomimetic based on molecularly imprinted polymers as recognition elements”, Anal. Chem., 67, 2142, 1995.
    43 Piletsky S. A., Piletskaya E. V., Panasyuk t. L., El’skaya A. V., Levi R., Karube I., Wulff G., “Imprinted membranes for sensor technology: opposite behavior of covalently and noncovalently imprinted membranes”, Macromolecules, 31, 2137, 1998.
    44 陳怡旦,聚苯胺修飾膜之合成與電化學及材料特性,中正大學化工碩士論文,民國八十八年。
    45 陳嘉倫,導電性聚苯胺行高分子材料製造氯離子感測器之研究, 成功大學化工碩士論文,民國八十五年。
    46 S. Maeda, D. B. Chairns and S. P. Armes, “NEW reactive polyelectrolyte stabilizers for polyaniline colloids”, Eur. Polym. J., 3, 245-253, 1997.
    47 E. k. W. Lai, P. D. Beattie, F. P. Orfino, E. Simon, S. holdcroft, Electrochemical oxygen reduction at composite films of Nafion, polyaniline and Pt”, Electrochim. Acta, 44, 2559-2569, 1999.
    48 A. F. Diaz, j. I. Castillo, J. A. Logan and W. Y. Lee, “Electrochemistry of conducting polypyrrole films”, j. Electroanal. Chem., vol. 129, 115, 1981.
    49 R. Qian and J. Qiu, “Electrochemically Prepared Polypyrroles from Aqueous Solutions”, Polymer journal, vol. 19, 157, 1987.
    50 A. J. Downard and D. Pletcher, “A study of the Conditions for the electrodeposition of Poly thiophene in acetinitrilf”, J. Electroanal. Chem., vol. 147, 1986.
    51 K. Tanaka, T. shichiri, S. Wang and T. Yamabe, “A Study of the Electropolymerization of Thiophene”, Synth. Met., vol. 24, 203, 1998.
    52 J. C. Lacroix and A. F. Diaz, “Electrolyte effects on the switching Reaction of Polyaniline”, J. Electrochem. Soc., vol. 135, 1457, 1988.
    53 K. I. Yoshikawa, K. I. Yoshioka, A. Kitani and k. sasaki, “Preparation of Highly conducting Polyanilines”, J. Electroanal. Chem ., vol. 270, 421, 1989.
    54 李漢峰,聚苯胺行固態電解質二極式氯氣感測器之研究,成功大學化學工程系碩士論文,民國86年.
    55 T. Tanaka, Chem. Sci. Am., vol. 244, 100, 1981.
    56 K. Y. Qiu and J. Ma, Huanxue. Tongbao, vol. 11, 15, 1985.
    57 E. K. W. Lai, P. D. Beattie, F. P. Orfino, E. Simon and S. Holdcroft, “electrochemical oxygen reduction at composite films of Nafion, polyaniline and Pt”, Electrochim. Acta, vol. 44, 2559-2569, 1999.
    58 G. Hailin and L. Yucheng, “characterization of a chemoresistor pH sensor based on conducting poolypyrrole”, Sesnors and Actuatores B, vol. 21, 57-63, 1994.
    59 陳男銘,“聚苯胺修飾高分子固態電解質氯氣感測器之研究化學感測器”,成功大學化工碩士論文, 10-12, 1996.
    60 K. Makoto, t. Toshiumi, M. Takashi, A. Hiroyuki, Molecular Imprinting from fundamentals to Applications, WELEY-VCH, Weinheim, Germany (2003).
    61 A. J. Bard, Electrochemical Methode: Fundamentals and Applications 2nd ed., John Wiley&Sons, New York (2001).
    62 曾貴聖,“鐵氰化銦修飾電極感測半胱氨酸反應機制之研究,台灣大學,台北 (2002).
    63 Z. Makita, H. Vlassara, E. Rayfield, K. Cartwright, E. Friedman, R. Rodby, A. Cerami and R. Bucala, “Hemoglobin-AGE: A Circulating marker of Advanced Glycosylation”, Science, vol. 258, pp. 651-653, 1992.
    64 Z. Gryczynski, S. Beretta, J. Lubkowski, A. Razynska, I. Gryczynski and E. Bucci, “ Time-resolved fluorescence of hemoglobin species”, Biophysical Chemistry, vol. 64, pp. 81-91, 1997.
    65 林錫璋,國立成功大學醫學系內科學科教授, 2006
    66 陳宏杰,自組裝薄膜分離與電流式分子感測之研究,國立台灣大學,台北 (2004).

    無法下載圖示 校內:2046-07-26公開
    校外:2066-07-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE