| 研究生: |
陳逸炘 Chen, Yi-Hsin |
|---|---|
| 論文名稱: |
發展糖化血紅素導電性分子模版之生物感測器 The Development of Hemoglobin-A1c Conductive Molecularly Imprinted Polymer Biosensor |
| 指導教授: |
周澤川
Chou, Tse-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 糖化血紅素 、分子模版 、感測器 |
| 外文關鍵詞: | sensor, molecularly imprinted polymer, HbA1c |
| 相關次數: | 點閱:97 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要以發展糖化血紅素分子模版感測電極為主要目標,架構分子模版電極時,以定電流聚合導電性高分子模版,以砒咯單體為主,然後以鐵氰化鉀 (K3Fe(CN)6) 與亞鐵氰化鉀 (K4Fe(CN)6) 的氧化還原反應做為電流感測之指示劑,並配合循環伏安法來記錄氧化還原峰值。首先先研究聚砒咯在不同厚度(聚合時間)以及電流密度時,對鐵氰化鉀與亞鐵氰化鉀的氧化還原,發現在定電流超過 3µA 後,氧化還原峰值從17~19µA 掉至 4~6µA,而聚合時間在超過 180秒之後,加入糖化血紅素時,無法產生訊號。研究糖化血紅素是否會在聚砒咯膜上在 -0.2~0.6V vs. Ag/AgCl 之間是否會氧化還原反應,發現作了清洗前、後還有再吸附都發現無氧化還原。還有再吸附不同時間的氧化峰值約在1個小時後便達飽和。
再吸附不同濃度糖化血紅素發現在約 0~60 µg/ml 得到線性關係較佳。從飽和吸附曲線,我門按照 Scatchard plot 的公式
[B] 是吸附在分子模版上的目標物濃度, [F] 是在未鍵結餘分子模版的目標物濃度, Kd是解離平衡常數,N 是辨識性孔洞總量,因此做 [B]/[F] 對 [B] 的圖,線性迴歸後可得 Kd 以及 N ,在本實驗中我門得到 Kd= 1250 µg/ml,N=187.75 µg/ml。在選擇性方面我門做了血紅素與糖化血紅素,選擇比率約0.44,還有糖化血紅素對免疫球蛋白 ( IgG )、溶菌酶( Lysozyme )、人血清白蛋白 ( HSA ),選擇比率各約0.38、0.68、0.54。後面並附上一些分子模版表面觀察。並有與崑山科技大學電機系黃俊岳教授的碩士班張志弘同學合作,他製作 home-made potential state 接上糖化血紅素分子模版電極後來量測糖化血紅素,經修正後得到較好的圖。另還有與成功大學工程科學系李國賓教授的碩士班學生黃朝均同學合作微流體血糖感測器。
In this research, we develop Hemoglobin-A1c MIP sensor for purpose, to construct this MIP sensor, we choose Pyrrole as a monomer, generate a template by galvanostatic electropolymerization, then consider red prussiate of potash and yellow prussiate of Potash as indicator for sensing Hemoglobin-A1c, we record the redox current by Cyclic Voltammetry. We study first is that different film thickness versus redox current and different applied current for electropolymerization versus redox current, we find that we can’t sense redox current when electropolymerization over 180sec with HbA1c, and the applied current over 3µA, the redox current reduce from 17~19µA to 4~6µA . And we also study if we just use HbA1c on Polypyrrole film based on Pt electrode to scan CV how the redox current change, compare the before wash, after wash and rebinding HbA1c redox current, all redox current can’t be seen.
Study the linearity of different rebinding Hba1c concentration versus decrease current, we got better linearity between 0 to 60 µg/ml. And before we illustrate scathchard plot, need make saturated curve first then take the data to scatchard plot equation
There [B] is target concentration adsorbed on MIP surface, [F] is the target concentration of unbind HbA1c in solution, Kd is dissociation constant, N is selective porous on MIP surface, so we take [B]/[F] versus [B] to make a curve, after linear regression we can get the slope and intercept, Kd=1250µg/ml, N=187.75µg/ml. Also we research how’s the selectivity of Hb/HbA1c, IgG/HbA1c, Lysozyme/HbA1c, HAS/HbA1c , and we got 0.44, 0.38, 0.68 and 0.54 respectly.
In the last study, I have some data from cooperation with the E.E graduate student C. H Chang of Prof. C. Y. Huang from KunShan university, he develop a home-made potential state, and we compare the data with EG&G 263A potential state. The other hand we also cooperate with E. S. graduate student C. J. Huang of Prof. G. B. Lee from ChengKung university, we develop a microfluidic system for sensing glucose.
1 Bard, A. J. and Faulkner, I. R., ”Electrochemical Methods Fundaments and applications”, Wiley, New York, 1980.
2 Gamati S., Luong J. H. T. and Mulchandani A.,”A microbial biosensor for trimethyamine using Pseudomonas aminovirans cells”, Biosensors and Bioelectron., 6, 125-131, 1991.
3 Jones T. P. and Porter M. D., ”Optical pH sensor based on the chemical modification of a porous polymer”, Anal. Chem., 60, 404-406, 1988.
4 Zhujun Z. and Seitz W. R., “Optical sensor for oxygen based on immobilized hemoglobin”, Anal. Chem., 58, 220-222, 1986.
5 Josefina Parellada, Arantzazu Narvaez, Elena Dominguez and Ioanis Katakis, ”A new type of hydrophilic carbon paste electrodes for biosensor manufacturing: binder paste electrodes”, Biosensors and
Bioelectronics, Vol. 12. No. 4, 267-275, 1997.
6 Quilbault G. G. and Montalvo J. G. Jr., “A area-specific enzyme electrode”, J. Am. Chem. Soc., 91 2164-2165, 1969.
7 Subrayal. M. Reddy and Pankaj Vadgama, “Entrpment of GODx in non porous PVC”, Analytica. Chimica Acta, 461, 57-64, 2002.
8 Rajesb Vaidya and Entisam Wilkins, “Effect of interference of amperometric glucose biosensors with cellulose acetate membrane”, Electroanalysis, 6, 677-682, 1994.
9 Li, J., Chia, L.S., Goh, N.K., Tan, S.N., “Renewable silica sol-gel derived composite based glucose biosensor”, J. Electroanal. Chem., Vol. 460, 234-241, 1999.
10 Nicola C. Foulds and Christopher R. Lowe, J. Chem. Soc. Faraday
Trans., 1, 82, 1259, 1986.
11 M. Umaòa and J. Waller, Anal. Chem., 58, 2979, 1986.
12 Cabral J. M. S. and Kennedy J. F., “Covalent and coordination immobilization of proteins” Protein Immobilization: Research, Developments and Applications, ed R. F. Taylor (New York; Dekker), 73-183, 1991.
13 Taylor R. F., “Development and applications of antibody- and receptor-based biosensors Bioinstrumentation: Research, Developments and Applications”, ed D. L. Wise (Boston, MA; Butterworths, 355-412.
14 Tamiya E., Siura Y., Akiyama A. and Karube I., ”Ultramicro-H2O2 electrode for fabrication of the in vivo biosensor”. Ann. NY Acad. Sci., 613, 396-400, 1990.
15 Surridge N. A., Debold E. R., Chang J. and Neudeck G. W., ” Electron-transport rates in an enzyme electrode for glucose” Diagnostic Biosensors Polymers ed A. M. Usmani and N. Akmal, 47-70.
16 台北榮總新陳代謝科 http://www.vghtpe.gov.tw/~meta/dm.htm
17 Bulletin 9282 s1, Beckman Coulter, Inc.
18 Diabetes Care 1999;22 (Suppl. 1):S32-S41
19 http://www.canterburyscientific.com/.
20 Rodney Boyer, Concepts in Biochemistry.
21 http://www.primushplc.com/primus/products/a1c/pdq/, primus corporation.
22 Daniela Stöllner, Walter S., Frieder S., Axel Warsinke, “Membrane-immobilized haptoglobin as affinity matrix for a hemoglobin-A1c immuosensor”, Analytica Chimica Acta, 470, 111-119, 2002
23 Daniela Stöllner, Axel Warsinke, Walter S., Rudolf D., “Immunochemical Determination of Hemoglobin-A1c Utilizing a Glycated Peptide as Hemoglobin-A1c Analogon”, biosensor stmposium, TÜBINGEN, 2001.
24 Koji Sode, Yuka T., Shigenori O., Wakako T., Tomohiko Y., “A new concept for the construction of an artificial dehydrogenase for fructosylamine compounds and its application for an amperometric fructosylamine sensor” , Analytica Chimica Actas, 435, 151-156, 2001.
25 Koji Sode, Shigenori O., Yoshitsugu Y., Tomohiko Y., “Construction of a molecular imprinting catalyst using target analogue template and its application for an amperometric fructosylamine sensor”, Biosensors and Bioelectronics, 18, 1485-1490, 2003.
26 Metrica Inc. http://www.metrika.com/index.php
27 汪玉銘,”定電流聚合導電性高分子法製備葡萄糖生物感測器之研究”,成功大學化工博士論文,6-27, 2003。
28 B. Sellergren, molecularly Imprinted Polymers, Elsevier Science, Amsterdam, Netherlands (2001).
29 H. andersson, K. Haupt, C. Allender, c. Alexander, M. Whotcombe, S. Piletsky, B. Sellergren, I. Nicholls, Fundamentals of Molecular Imprinted, Notees of MIP 2002 Pre-conference course, Second International Workshop on Molecularly imprinted Polymers, La Grande Mote, France sept. 16-19th, (2002).
30 http://www.smi.tu-berlin.de/story/MIT.htm.
31 http://www.chemistry.wustl.edu/~edudev/LabTutorials/HIV/DrugStrategies.html
32 Paul, L., Campbell D., “The manufacture of antibodies in vitro”, J. Exper Med, 76, 21200, 1942.
33 G. Wulff, “Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies”, Angewandte Chemie (international Edition in English), 37, 1812-1832, 1995.
34 D. Kris, K. Mosbach, “Competitive amperometric morphine sensor based on an agarose immobilized molecularly imprinted polymer”, Analytica Chimica Acta, vol. 300, 71-75, 1995.
35 S.A. Piletsky, E.V Piletskaya, A.V. Elgersma, K. Yano, I. Karube, “Atrazine sensing by molecularly imprinted membranes”, Bioensor and bioelectronics, vol. 10, 959-964, 1995.
36 P.S. reddy, T. Kobayashi, N. Fuji, “Molecular imprinting in hydrogen bonding networks of polyamide nylon for recognition of amino acids”, Journal of Applied Polymer Science, vol. 68, 1863-1866, 1998.
37 R. Ardhady, “functional monomers”, Journal of Macromolecular Science-Reviews in Macromolecular chemistry and Physics, vol. 32, 101-132, 1992.
38 P.A.G. Cormack, A.Z. Elorza, “molecularly imprinted polymers: synthesis and characterization”, journal of chromatography B, vol. 804, 173-182, 2004.
39 Hedborg, E., Winquist F., Lundstrom I., Anderson L., Mosbach K., “Some studies of molecularly-imprinted polymer memebranes in combination with field-effect devices”, Sens. Actuator A-Phy., 38, 796, 1993.
40 Malitesta C., Losito I., Zambonin P. G., “Molecularly imprintedelectrosynthesized polymers: new materials for biomimetic sensors”, Anal. Chem., 71, 1366, 1999.
41 Levi R., mcniven S., Piletsky S. A., Cheong S. H., Yano K., Karube I.,”Optical detection of chloramphenicol using molecularly imprinted polymers”, Anal. Chem., 69, 2017, 1997.
42 Kriz D., Ramstrom O., Svensson A., Mosbach K., “Introducing biomimetic based on molecularly imprinted polymers as recognition elements”, Anal. Chem., 67, 2142, 1995.
43 Piletsky S. A., Piletskaya E. V., Panasyuk t. L., El’skaya A. V., Levi R., Karube I., Wulff G., “Imprinted membranes for sensor technology: opposite behavior of covalently and noncovalently imprinted membranes”, Macromolecules, 31, 2137, 1998.
44 陳怡旦,聚苯胺修飾膜之合成與電化學及材料特性,中正大學化工碩士論文,民國八十八年。
45 陳嘉倫,導電性聚苯胺行高分子材料製造氯離子感測器之研究, 成功大學化工碩士論文,民國八十五年。
46 S. Maeda, D. B. Chairns and S. P. Armes, “NEW reactive polyelectrolyte stabilizers for polyaniline colloids”, Eur. Polym. J., 3, 245-253, 1997.
47 E. k. W. Lai, P. D. Beattie, F. P. Orfino, E. Simon, S. holdcroft, Electrochemical oxygen reduction at composite films of Nafion, polyaniline and Pt”, Electrochim. Acta, 44, 2559-2569, 1999.
48 A. F. Diaz, j. I. Castillo, J. A. Logan and W. Y. Lee, “Electrochemistry of conducting polypyrrole films”, j. Electroanal. Chem., vol. 129, 115, 1981.
49 R. Qian and J. Qiu, “Electrochemically Prepared Polypyrroles from Aqueous Solutions”, Polymer journal, vol. 19, 157, 1987.
50 A. J. Downard and D. Pletcher, “A study of the Conditions for the electrodeposition of Poly thiophene in acetinitrilf”, J. Electroanal. Chem., vol. 147, 1986.
51 K. Tanaka, T. shichiri, S. Wang and T. Yamabe, “A Study of the Electropolymerization of Thiophene”, Synth. Met., vol. 24, 203, 1998.
52 J. C. Lacroix and A. F. Diaz, “Electrolyte effects on the switching Reaction of Polyaniline”, J. Electrochem. Soc., vol. 135, 1457, 1988.
53 K. I. Yoshikawa, K. I. Yoshioka, A. Kitani and k. sasaki, “Preparation of Highly conducting Polyanilines”, J. Electroanal. Chem ., vol. 270, 421, 1989.
54 李漢峰,聚苯胺行固態電解質二極式氯氣感測器之研究,成功大學化學工程系碩士論文,民國86年.
55 T. Tanaka, Chem. Sci. Am., vol. 244, 100, 1981.
56 K. Y. Qiu and J. Ma, Huanxue. Tongbao, vol. 11, 15, 1985.
57 E. K. W. Lai, P. D. Beattie, F. P. Orfino, E. Simon and S. Holdcroft, “electrochemical oxygen reduction at composite films of Nafion, polyaniline and Pt”, Electrochim. Acta, vol. 44, 2559-2569, 1999.
58 G. Hailin and L. Yucheng, “characterization of a chemoresistor pH sensor based on conducting poolypyrrole”, Sesnors and Actuatores B, vol. 21, 57-63, 1994.
59 陳男銘,“聚苯胺修飾高分子固態電解質氯氣感測器之研究化學感測器”,成功大學化工碩士論文, 10-12, 1996.
60 K. Makoto, t. Toshiumi, M. Takashi, A. Hiroyuki, Molecular Imprinting from fundamentals to Applications, WELEY-VCH, Weinheim, Germany (2003).
61 A. J. Bard, Electrochemical Methode: Fundamentals and Applications 2nd ed., John Wiley&Sons, New York (2001).
62 曾貴聖,“鐵氰化銦修飾電極感測半胱氨酸反應機制之研究,台灣大學,台北 (2002).
63 Z. Makita, H. Vlassara, E. Rayfield, K. Cartwright, E. Friedman, R. Rodby, A. Cerami and R. Bucala, “Hemoglobin-AGE: A Circulating marker of Advanced Glycosylation”, Science, vol. 258, pp. 651-653, 1992.
64 Z. Gryczynski, S. Beretta, J. Lubkowski, A. Razynska, I. Gryczynski and E. Bucci, “ Time-resolved fluorescence of hemoglobin species”, Biophysical Chemistry, vol. 64, pp. 81-91, 1997.
65 林錫璋,國立成功大學醫學系內科學科教授, 2006
66 陳宏杰,自組裝薄膜分離與電流式分子感測之研究,國立台灣大學,台北 (2004).
校內:2046-07-26公開