簡易檢索 / 詳目顯示

研究生: 洪子翔
Hung, Tzu-Shiang
論文名稱: 運用樣式關聯性回饋之高效性內涵式音樂檢索
Effective Content-based Music Retrieval with Pattern-based Relevance Feedback
指導教授: 曾新穆
Tseng, Shin-Mu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 71
中文關鍵詞: 音樂內容檢索樣式關聯性回饋移動查詢點搜尋特徵值權重調整擴充查詢
外文關鍵詞: Content-based music retrieval, pattern-based relevance feedback, query point movement, query re-weighting, query expansion
相關次數: 點閱:111下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統上,使用者藉由比對音樂內涵式相似度,檢索其偏好音樂,一般稱之為「內涵式音樂檢索」(Content-based Music Retrieval,CBMR)。然而,現今內涵式音樂檢索方法中,使用者很難於一次檢索中得到較佳的音樂清單。因此,我們結合了三種關聯式回饋方法,分別為「移動查詢點」 (Query Point Movement,QPM)、「搜尋特徵值權重調整」 (Query Reweighting,QR) 和「擴充查詢」 (Query Expansion,QEX),提出一「以樣式為基礎之內涵式音樂回饋技術」(Pattern-Based Relevance Feedback ,PBRF)。為了解決區域最佳解的問題,我們更進一步提出了自動最佳化搜尋策略,藉由使用者回饋資訊,適當的選擇較佳的搜尋策略。因此,透過整合QPM、QR、QEX及自動最佳化搜尋策略,我們的方法可以從全域搜尋中準確預測出使用者偏好的音樂。實驗結果證實我們的方法在準確率上,優於既有的內涵式音樂檢索方法。

    Traditionally, people retrieve preferred music by computing the similarity of music content, namely content-based music retrieval (CBMR). A number of studies on content-based music retrieval have been presented until the present. However, it is not easy to make a high precise search within a query session. It motivates us to develop a query refinement technique called PBRF (Pattern-based Relevance Feedback) that combines three kinds of query refinement techniques, namely QPM (Query Point Movement), QR (Query Reweighting) and QEX (Query Expansion). To deal with the local optimal problem, we additionally propose a novel switch-based search strategy that adaptively selects the best search strategy based on user’s feedbacks. Through the integration of QPM, QR, QEX and switch-based search strategy, the user’s intention can be captured more precisely in the global search space. The experimental results reveal that our proposed approach performs better than existing CBMR methods in terms of precision.

    Abstract I 摘要 III 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 導論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究方法概述 4 1.4 研究貢獻 6 1.5 論文架構 7 第二章 文獻探討 8 2.1 音樂特徵值 8 2.2 音樂檢索系統 9 2.3 關聯性回饋查詢技術 10 2.3.1 查詢點移動 (Query Point Movement) 11 2.3.2 搜尋特徵值權重調整 (Query Re-Weighting) 12 2.3.3 擴充查詢 (Query Expansion) 13 第三章 研究方法 15 3.1 方法架構 15 3.2 離線處理階段 (Offline Preprocessing) 17 3.2.1 音樂特徵值擷取 17 3.2.2 音樂特徵值編碼 20 3.3 線上處理階段 (Online Preprocessing) 21 3.3.1 首次搜尋階段 (Initial Query Phase) 22 3.3.2 關聯式回饋搜尋階段 (RF Search Phase) 27 第四章 實驗分析 45 4.1 實驗資料 45 4.2 實驗規劃 45 4.2.1 實驗主軸 45 4.2.1 實驗評估 48 4.2.3 實驗方法 48 4.3 實驗結果 50 4.3.1 門檻值thrd準確率效益分析實驗 50 4.3.2 PBRF與其他傳統方法於模擬實驗之準確率比較分析實驗 51 4.3.3 PBRF與其他傳統方法於模擬實驗之NDCG比較實驗 53 4.3.4 各類音樂於模擬實驗準確率分析實驗 54 4.3.5 回傳數目準確率於模擬實驗分析實驗 57 4.3.6 PBRF與RBF真人實驗之準確率比較分析實驗 58 4.3.7 PBRF與RBF方法於真人實驗之NDCG比較分析實驗 59 4.4 實驗總結 60 第五章 結論與未來研究方向 62 5.1 結論 62 5.2 未來研究方向 63 參考文獻 65 自述 71

    [1] J. J. Aucouturier and F. Pachet, "Music similarity measures: What's the use?," in Proceedings of the third International Conference on Music Information Retrieval, Paris, France, 2002, pp. 157-163.
    [2] J. J. Aucouturier and F. Pachet, "Improving timbre similarity: How high is the sky?," Negative Results Speech Audio Sciences, vol. 1, 2004.
    [3] J. J. Aucouturier, F. Pachet, and M. Sandler, ""The way it Sounds": timbre models for analysis and retrieval of music signals," IEEE Transactions on Multimedia, vol. 7, pp. 1028-1035, 2005.
    [4] M. A. Bartsch and G. H. Wakefield, "Audio thumbnailing of popular music using chroma-based representations," IEEE Transactions on Multimedia, vol. 7, pp. 96-104, 2005.
    [5] D. Byrd and T. Crawford, "Problems of music information retrieval in the real world," Information Processing and Management, vol. 38, pp. 249-272, 2002.
    [6] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, "A Review of Audio Fingerprinting," Journal of VLSI Signal Processing, vol. 41, pp. 271-284, 2005.
    [7] M. Casey and M. Slaney, "The Importance of Sequences in Musical Similarity," in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2006.
    [8] M. Casey and M. Slaney, "Song intersection by approximate nearest neighbor search," in Proceedings of International Conference on Music Information Retrieval, Victoria, Canada, 2006.
    [9] M. A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney, "Content-Based Music Information Retrieval: Current Directions and Future Challenges," Proceedings of the IEEE, vol. 96, pp. 668-696, 2008.
    [10] K. Chakrabarti, K. Porkaew, and S. Mehrotra, "Efficient Query Refinement in Multimedia Databases," in Proceedings of 16th International Conference on Data Engineering, 2000, pp. 196-196.
    [11] G. Chen, T.-J. Wang, and P. Herrera, "A Novel Music Retrieval System with Relevance Feedback," in Proceedings of the 3rd International Conference on Innovative Computing Information and Control, 2008, p. 158.
    [12] R. Cilibrasi, P. Vitanyi, and R. D. Wolf, "Algorithmic Clustering of Music Based on String Compression," Computer Music Journal, vol. 28, pp. 49-67, 2004.
    [13] J. S. Downie, "Music Information Retrieval," Annual Review of Information Science and Technology, 2003.
    [14] J. Foote, M. Cooper, and U. Nam, "Audio Retrieval by Rhythmic Similarity," in Proceedings of Institute Research Coordination Acoustics Music, 2002.
    [15] H. Fujihara and M. Goto, "A music information retrieval system based on singing voice timbre," in Proceedings of International Conference on Music Information Retrieval, Vienna, Austria, 2007.
    [16] A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith, "Query by humming: musical information retrieval in an audio database," in Proceedings of the third ACM international conference on Multimedia, San Francisco, California, United States, 1995, pp. 231-236.
    [17] E. Gomez, "Tonal Description of Polyphonic Audio for Music Content Processing," INFORMS Journal on Computing, vol. 18, pp. 294-304, 2006.
    [18] J. Haitsma and T. Kalker, "A Highly Robust Audio Fingerprinting System," in Proceedings of the International Symposium on Music Information Retrieval, Paris, France, 2002.
    [19] K. Hoashi, K. Matsumoto, and N. Inoue, "Personalization of user profiles for content-based music retrieval based on relevance feedback," in Proceedings of the eleventh ACM international conference on Multimedia, Berkeley, CA, USA, 2003, pp. 110-119.
    [20] K. Hoashi, H. Ishizaki, K. Matsumoto, and F. Sugaya., "Content-based music retrieval using query integration for users with diverse preferences," in Proceedings of International Conference on Music Information Retrieval, 2007, pp. 463-466.
    [21] L. Hofmann-Engl, "Rhythmic similarity: A theoretical and empirical approach," in Proceedings of International Conference on Music Perception Cognition, 2002, pp. 564-567.
    [22] H. Hoos, K. Renz, and M. Gorg, "GUIDO/MIR - an experimental musical information retrieval system based on guido music notation," in Proceedings of the International Symposium on Music Information Retrieval, 2001, pp. 41-50.
    [23] N. Hu and R. B. Dannenberg, "A comparison of melodic database retrieval techniques using sung queries," in Proceedings of the 2nd ACM/IEEE-CS joint conference on Digital libraries, Portland, Oregon, USA, 2002, pp. 301-307.
    [24] Y. Ishikawa, R. Subramanya, and C. Faloutsos, "MindReader: Querying Databases Through Multiple Examples," in Proceedings of the 24rd International Conference on Very Large Data Bases, 1998, pp. 218-227.
    [25] J.-S. R. Jang, H.-R. Lee, and J.-C. Chen, "Super MBox: an efficient/effective content-based music retrieval system," in Proceedings of the ninth ACM international conference on Multimedia, Ottawa, Canada, 2001, pp. 636-637.
    [26] N. Kosugi, Y. Nishihara, S. Kon'ya, M. Yamamuro, and K. Kushima, "Music retrieval by humming-using similarity retrieval over high dimensional feature vector space," in Proceedings of PACRIM'99, 1999, pp. 404-407.
    [27] N. Kosugi, Y. Nishihara, T. Sakata, M. Yamamuro, and K. Kushima, "A practical query-by-humming system for a large music database," in Proceedings of the eighth ACM international conference on Multimedia, Marina del Rey, California, United States, 2000, pp. 333-342.
    [28] L. Kyogu and M. Slaney, "Acoustic Chord Transcription and Key Extraction From Audio Using Key-Dependent HMMs Trained on Synthesized Audio," IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, pp. 291-301, 2008.
    [29] M. Levy and M. Sandler, "Signal-based music searching and browsing," in Proceedings of International Conference on Consumer Electronics, 2007.
    [30] C.-C. Liu and C.-S. Huang, "A singer identification technique for content-based classification of MP3 music objects," in Proceedings of the eleventh international conference on Information and knowledge management, McLean, Virginia, USA, 2002, pp. 438-445.
    [31] B. Logan and A. Salomon, "A music similarity function based on signal analysis," in Proceedings of IEEE International Conference on Multimedia and Expo, 2001, pp. 745-748.
    [32] M. Mueller, F. Kurth, and M. Clausen, "Audio matching via chroma-based statistical features," in Proceedings of 6th International Conference on Music Information Retrieval, London, UK, 2005, pp. 288-295.
    [33] K. Porkaew and K. Chakrabarti, "Query refinement for multimedia similarity retrieval in MARS," in Proceedings of the seventh ACM international conference on Multimedia, Orlando, Florida, United States, 1999, pp. 235-238.
    [34] S. Rho, E. Hwang, and M. Kim, "Music Information Retrieval Using a GA-based Relevance Feedback," in Proceedings of the 2007 International Conference on Multimedia and Ubiquitous Engineering, 2007, pp. 739-744.
    [35] Y. Rui, T. S. Huang, and S. Mehrotra, "Content-based image retrieval with relevance feedback in MARS," in Proceedings of International Conference on Image Processing, 1997, pp. 815-818 vol.2.
    [36] J. Saunders, "Real-time discrimination of broadcast speech/music," in Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 1996, pp. 993-996 vol. 2.
    [37] M.-K. Shan, M.-F. Chiang, and F.-F. Kuo, "Relevance feedback for category search in music retrieval based on semantic concept learning," Multimedia Tools and Applications, vol. 39, pp. 243-262, 2008.
    [38] A. Sheh and D. P. Ellis, "Chord segmentation and recognition using EM-trained hidden Markov models," in Proceedings of International Conference on Music Information Retrieval, Baltimore, Maryland 2003.
    [39] D. Tao, H. Liu, and X. Tang, "K-BOX: A Query-by-Singing based Music Retrieval System," in Proceedings of the 12th annual ACM international conference on Multimedia, New York, USA, 2004.
    [40] G. T. Toussaint, "A comparison of rhythmic similarity measures," in Proceedings of 5th International Conference on Music Information Retrieval, Barcelona, Spain, 2004, pp. 242-245.
    [41] R. Typke, F. Wiering, and R. Veltkamp, "A survey of music information retrieval systems," in Proceedings of the International Symposium on Music Information Retrieval, 2005, pp. 153-160.
    [42] M. Varewyck, J. Pauwels, and J.-P. Martens, "A novel chroma representation of polyphonic music based on multiple pitch tracking techniques," in Proceeding of the 16th ACM international conference on Multimedia, Vancouver, British Columbia, Canada, 2008, pp. 667-670.
    [43] A. Volk, J. Garbers, P. v. Kranenburg, F. Wiering, R. C. Veltkamp, and L. P. Grijp, "Applying rhythmic similarity based on inner metric analysis to folksong research," in Proceedings of International Conference on Music Information Retrieval, Vienna, Austria, 2007.
    [44] X. Wu and M. Li, "A QBSH system based on a three-level melody representation," in Proceedings of International Conference on Music Information Retrieval, Vienna, Austria, 2007.
    [45] J. Yuhua, Y. Bian, L. Mingyu, and N. Xiamu, "MDCT-Based Perceptual Hashing for Compressed Audio Content Identification," in Proceedings of IEEE 9th Workshop on Multimedia Signal Processing, 2007, pp. 381-384

    下載圖示 校內:2013-08-11公開
    校外:2013-08-11公開
    QR CODE